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Metal contamination of subsurface environments and engineered water systems 

can be derived from natural processes and anthropogenic activities associated with 

industrial processes, past weapons production, and mining works. The toxic and 

carcinogenic effects of uranium and chromium pose a significant risk to the environment 

and human health. For uranium contamination in subsurface environments, phosphate 

addition has been performed for in-situ immobilization, which can avoid the costs 

associated with pump-and-treat or excavation-based remediation strategies. The 

interactions of uranium and phosphate in Hanford sediments had been insufficiently 

explored in terms of its site-specific groundwater chemistry and aquifer sediment 

properties. For water treatment system, novel materials such as engineered magnetite 

nanoparticles have gained attention due to their promising performance in separating 

heavy metals from the aqueous phase.  As a result, the study of the interaction between 

metals with either sediments or nanocomposites is imperative in designing and 

implementing subsurface in-situ remediation and improving water treatment processes. 
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To investigate the impact of phosphate on the immobilization of U(VI) in Hanford 

sediments, batch and column experiments were performed with artificial groundwater 

prepared to emulate the conditions at the site. Batch experiments revealed enhanced U(VI) 

sorption with increasing phosphate addition. X-ray absorption spectroscopy (XAS) 

measurements of samples from the batch experiments found that U(VI) was 

predominantly adsorbed at conditions relevant to most field sites (low U(VI) loadings, < 

25 µM), and U(VI) phosphate precipitation occurred only at high initial U(VI) (>25 µM) 

and phosphate loadings. While batch experiments showed the transition of U(VI) uptake 

from adsorption to precipitation, the column study was more directly relevant to the 

subsurface environment because of the high solid:water ratio in the column and the 

advective flow of water. In column experiments, more U(VI) was retained in sediments 

when phosphate-containing groundwater was introduced to U(VI)-loaded sediments than 

when the groundwater did not contain phosphate. This enhanced retention persisted for at 

least one month after cessation of phosphate addition to the influent fluid. Sequential 

extractions and laser-induced fluorescence spectroscopy (LIFS) of column sediments 

suggested that the retained U(VI) was primarily in adsorbed forms.  These results indicate 

that in-situ remediation of groundwater by phosphate addition provides lasting benefit 

beyond the treatment period via enhanced U(VI) adsorption to sediments. U(VI) transport 

through sediment-packed columns have been demonstrated to be kinetically controlled 

and the heterogeneous system contributed to the transport behavior under different flow 

rates. 

In water treatment processes, surface-functionalized magnetite nanoparticles have 

high capacity for U(VI) and Cr(VI) adsorption and can be easily separated from the 
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aqueous phase by applying a magnetic field. A surface-engineered bilayer structure 

enables the stabilization of nanoparticles in aqueous solution.  Functional groups such as 

carboxylic or amine groups in stearic acid (SA), oleic acid (OA), octadecylphosphonic 

acid (ODP), and trimethyloctadecylammonium bromide (CTAB) coatings led to different 

adsorption extents towards U(VI) and Cr(VI). The adsorption of U(VI) to OA-coated 

nanoparticles was examined as a function of initial loading of U(VI) (5-15 μM), pH (4.5 to 

10), and the presence or absence of carbonate. CTAB-coated nanoparticles possess higher 

Cr(VI) adsorption affinity than nanoparticles with carboxyl groups (SA), due to the strong 

electrostatic interactions between opposite charges. For both U(VI) and Cr(VI), the entire 

adsorption dataset were successfully simulated with surface complexation models with a 

small set of adsorption reactions. The results show that the adsorption behavior was 

related to the changing aqueous species and properties of surface coatings on 

nanoparticles. The models could also capture the trend of pH-dependent surface potential 

that are consistent with measured zeta potentials.   

While developing novel materials for metal removal, the stability and treatment 

efficiency of the material need to be tested in real water systems. The application of 

CTAB-coated nanoparticles was tested with the presence of two drinking water supplies, 

and decreases in Cr(VI) adsorption were associated with the presence of Ca2+. When the 

Ca2+ concentration increased from 0 to 3.3 mM, adsorption decreased.  Because only 

slight aggregation was associated with Ca2+ and an observed increase in zeta potential 

with Ca2+ addition should actually enhance Cr(VI) adsorption, the causes of inhibition of 

Cr(VI) by Ca2+ are not associated with particle size or surface charge. Instead it is likely 
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that Ca2+ influences the structure of the organic bilayer on the nanoparticle surfaces in a 

way that decreased the availability of surface sites. 

The information gained from these research projects improved our understanding 

of metal interactions with both sediments from subsurface environments and engineered 

nanoparticles. It broadened knowledge of the controlling processes during the in-situ 

remediation of field sites and the separation of heavy metals from in water treatment. For 

remediation, the results illustrate the consideration of optimizing the timing and doses of 

phosphate addition in remediation strategies could lead to slower U(VI) release with 

effectively controlled levels. For water treatment the application of the material-based 

treatment processes needs more consideration of its stability and treatment performance 

with real water resources. 
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Chapter 1. Introduction 

1.1 Background and Motivation 

The contamination of heavy metals and radionuclides in soils and drinking 

water system is a serious public health concern due to their toxic and carcinogenic 

effects. Interfacial interactions between solid and aqueous phases can control the fate 

and transport of metals and radionuclides in subsurface environments as well as the 

removal of metals from aqueous phase for water purifications. Uranium 

contamination of soil and groundwater is largely due to the past weapon productions, 

mining processes and waste disposal activities. Uranium contamination of subsurface 

environments in the U.S. is widespread with more than 120 DOE contaminated sites 

across 36 states (Palmisano and Hazen 2003). The drinking water standard of 

uranium is 30 µg/L based on its chemical toxicity, and radiological effects are 

another concern for human health.  Chromium contamination has both natural and 

anthropogenic sources.  A current national drinking water standard of 100 µg/L is set 

for total chromium.  However, California has specifically set the standard for Cr(VI) 

as 10 µg/L, which can drive the need for deployment of treatment processes at 

utilities that had not been previously needed. 

 

1.1.1 Aqueous uranium geochemistry and associated uranium 

sorption processes 

In environmental systems, uranium exists primarily in the oxidation states of 

U(IV) and U(VI) (Figure 1.1). U(VI) exists as uranyl ion, and forms uranyl-
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carbonates and uranyl-hydroxides. Adsorbed forms of U(VI) on iron oxides and 

clays have been observed in uranium contaminated field sites. Precipitation of 

U(VI)-phosphate species could lower the solubility of uranium in oxic conditions. 

U(IV) is primarily found as uraninite UO2(s) in reducing environments and has low 

solubility. The remediation of uranium has been conducted in many field sites 

through biotic or abiotic processes, which reduces U(VI) to U(IV) to achieve 

immobilized uranium. However, long-term stability of reduced UO2 is a concern 

when the site is exposing to oxic conditions. As a result, the immobilization of U(VI) 

species can serve as a stand-alone method or a complement method to 

bioremediation. U(VI) can be adsorbed to many forms of iron oxides that are 

naturally abundant in sediments. 

 

Figure 1.1. Overview of uranium aqueous biogeochemistry 

 

Interfacial interactions between metals with natural sediments are relevant to 

the fate and transport of uranium in sediments collected from the Hanford 300 Area, 
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which is a widely studied uranium contaminated site where two process ponds 

received 58,000 kg of U from 1943 to 1975 (Catalano et al. 2006). The 

contamination of groundwater and soil occurred as a result of direct injection of 

mixed waste into the subsurface, leakage from storage tanks, and infiltration from 

unlined storage ponds into the surrounding media.  The water table at this site is 

influenced by the stage of the nearby Columbia River, and released uranium can be 

mobilized from the sediments when the water table rises during high river stages. In 

the alkaline pH range, U(VI) exits as aqueous complexes with carbonate, hydroxide 

and phosphate whose predominance changes with changing pH and concentrations 

of carbonate and phosphate (Figure 1.2).  

 

Figure 1.2. Speciation calculations predicted using the equilibrium modeling system 

MINEQL+, v 5.0, with the thermodynamic constants listed in Appendix A, Table A.1. No 

precipitation of solids was considered. a. TOT U=4 µM, TOT CO3 = 1 mM, closed to 

atmosphere; b. TOT U=4 µM, TOT CO3 = 1 mM, TOT PO4= 1 mM, closed to atmosphere. 

 

In-situ immobilization of uranium can avoid the costs associated with pump-

and-treat or excavation-based remediation strategies. In natural systems, uranium has 
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been observed to be immobilized by the presence of uranyl phosphate minerals  

(Jerden et al. 2003, Fuller et al. 2002). The potential mechanisms responsible for 

uranium immobilization after phosphate addition include precipitation of low 

solubility uranium phosphates, enhanced adsorption to minerals originally present, 

and adsorption or incorporation into newly formed calcium phosphate minerals such 

as hydroxyapatite (Fuller et al. 2002, Shi et al. 2009 and Mehta et al. 2016). Several 

laboratory studies have shown that uranyl phosphate phases can precipitate quickly 

at acidic to circumneutral pH (Mehta et al. 2014, Kanematsu et al. 2014). Adsorption 

of uranium to iron oxides (such as ferrihydrite and goethite) can be enhanced by the 

presence of phosphate through the formation of ternary surface complexes and 

changing surface charge (Singh et al. 2012, Cheng et al. 2004). 

The extent of U(VI) adsorption to natural sediments varies depending on 

sediment mineralogy and the aqueous solution’s inorganic carbon level, pH, and total 

dissolved solids (Barnett et al. 2000, Serne et al. 2002 and Stoliker et al. 2011). For 

example, because of high dissolved inorganic carbon (DIC) and calcium 

concentrations, experiments conducted with Rifle sediments showed only slight 

retention of U(VI) upon phosphate addition because the ternary Ca-U(VI)-carbonate 

species were dominant and have higher solubility and lower sorption affinity to the 

sediments (Mehta et al. 2015). As a result, the effectiveness of phosphate treatment 

may vary greatly depending on the site-specific mineralogy and groundwater 

chemistry, especially the pH and carbonate concentration.  Further, the fate of the 

U(VI) after stopping phosphate injection remains unknown. 
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1.1.2 Chromium water chemistry and application of nanoparticles 

Investigation on the interactions between metals and novel nanocomposites 

would benefit the future application of the sorbents for water purifications. Similar to 

uranium speciation, the predominant chromium species changes with changing water 

chemistry (Figure 1.3). Cr(III) is primarily found as cationic species, while toxic 

Cr(VI) occurs as the anions chromate (CrO4
2-) and biochromate (HCrO4

-). 

Iron oxide nanoparticles can be more effective sorbents than larger iron 

oxides and other sorbents due to their large specific surface area, high dispersion, 

high surface reactivity and ease of surface modification (Zeng et al. 2008, Xu et al. 

2012 and Wang et al. 2012). Iron-oxide nanoparticle surfaces can be modified with a 

variety of materials (humic acid, polymers and fatty acids) (Ge et al. 2015, Jiang et al. 

2014) (Ge et al. 2015, Jiang et al. 2014) that can stabilize nanoparticles while 

maintaining the ability to remove metal contaminants (U(VI), As(V), Cu(VI) and 

Cr(VI)). Humic acid-covered magnetite particles effectively removed the metal 

contaminants Hg(II), Pb(II), Cd(II) and Cu(II) from tap water and natural waters at 

pH from 2 to 9 (Liu et al. 2008).  Functional groups of humic acid were also reported 

to be responsible for the reduction of Cr(VI) to non-toxic Cr(III) (Jiang et al. 2014). 

Chitosan (polysaccharide)-bound magnetic nanoparticles were prepared for removal 

of Cu(II) ions (Chang et al. 2005). Manganese ferrite/magnetite nanoparticles coated 

with fatty acids have been applied for U(VI) sorption. NH2-functionalized 

nanomagnetic polymer adsorbents (NH2-NMPs) have been studied for Cr(VI) 

removal that had adsorption mechanisms as electrostatic attraction, ion exchange and 

coordination interactions (Zhao et al. 2010). However, the impact of water chemistry 
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on the adsorption of U(VI)/Cr(VI) to magnetite coated with fatty acids had not 

previously been evaluated with respect to systematic variation in the water chemistry. 

 

Figure 1.3. pe-pH diagram for chromium species with pH from 2 to 12, TOTCr = 0.1 µM. 

 

While developing novel materials for metal removal, the stability and 

treatment efficiency of the material needs to be tested in real water systems.  Of 

particular concern is the potential for nanoparticle suspensions to become 

destabilized and for nanoparticles to aggregate such that their effective surface area 

is greatly reduced. Aggregation of oleic acid-coated nanoparticles at pH 7.2 by Na+ 

and Ca2+ has been reported with critical coagulation concentrations of 710 mM and 

10.6 mM, respectively (Li et al. 2014).  These are high concentrations relative to 

those that will be encountered in drinking water treatment. In a previous study with a 

natural water with dissolved Ca2+ and Mg2+, these solutes did not influence Cu2+ 

removal by NH2-NMPs (Hao et al. 2010).  However, the impact of cations/anions on 

Cr(VI) adsorption to amine functionalized nanoparticles remains unknown as Cr(VI) 
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is present as anionic forms that may respond differently than the cationic Cu(II) 

species studied in that earlier work. 

 

1.1.3 Surface Complexation Modeling and Reactive Transport 

Modeling 

Surface complexation modeling (SCM) is a quantitative tool for predicting 

metal adsorption in a reaction-based framework that accounts for the full aqueous 

speciation, surface chemical reactions, and the impacts of surface potential on the 

adsorption of charged species (Wang et al. 2012, Xie et al. 2016). SCM accounts for 

the impact of water chemistry on aqueous and surface speciation in predicting 

adsorption over a broad range of conditions with a set of reactions and corresponding 

reaction constants (Wang et al 2013). Metal adsorption has been described by 

various types of SCMs.  For U(VI) adsorption to solids that are comprised of 

multiple types of adsorbents, a non-electrostatic model can be applied, such as was 

done for modeling the U(VI) adsorption to Hanford sediments (Stoliker et al. 2011). 

The diffuse double layer model is one of most widely used electrostatic SCMs that 

accounts for the energetics associated with both chemical binding to the sorbent 

surface and electrostatic interactions between solutes and sorbent surfaces, which is 

suitable for understanding contaminant adsorption to minerals in sediments and to 

sorbents used in water treatment.  A diffuse double layer model includes a compact 

layer and a diffuse layer. A schematic of the interfacial structure is shown in Figure 

1.4. The compact layer contains all specifically adsorbed ions. The diffuse layer 

starts from the d plane and contains non-specifically adsorbed ions at concentrations 
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that differ from their values in bulk solution. These ions are attracted to or repelled 

from the surface due to electrostatic interactions. The relation between the charge 

and the potential at the d plane can be determined based on the Gouy-Chapman 

equation (Equation 1.1) (Benjamin 2014):  

𝜎𝑑 = −0.1174𝐶𝑠0.5𝑠𝑠𝑠ℎ 𝑧𝑧𝜓𝑑
2𝑅𝑅

          Equation 1.1 

where σd is the equivalent charge density (C/m2),  F as the Faraday constant (96,485 

C/mol), Cs is the electrolyte concentration (mol/L),  z is the absolute value of the 

ionic charge number of the electrolyte ions,  ψd  is the electrical potential in the d 

plane (V), R is the gas constant (8.314 J/mol-K) and T is temperature (K). 

 

Figure 1.4. Profiles of potentials versus distance from the surface (assuming negatively 

charged nanoparticle surface).  The locations of the surface, d plane and shear plane are 

indicated in the schematic diagram.  

 

When adsorption of ions to a charged surface occurs, the change of both 

chemical and electrical potential energy can result in different criterion for the 

reaction equilibrium, with an activity coefficient (γi, ext) accounting for the imposed 
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electrical potential from the external side.  Based on that, the intrinsic equilibrium 

constant Kint would not only consider the chemical interactions but also the electrical 

interactions and it is linked to the apparent adsorption equilibrium constant Kapp by γi, 

ext (Equation 1.2). When applying a SCM that accounts for electrostatic contributions 

to adsorption, this modification of the intrinsic equilibrium constant to yield an 

apparent equilibrium constant needs to be considered in the model (Benjamin 2014). 

 γi, ext = exp[zi F ψi,ext /(RT)]    Equation 1.2 

While studying the interactions between dissolved metals and charged 

surfaces, it is important to consider the concepts of zeta potential and surface 

potential (Figure 1.4).  The surface potential is defined as the electrokinetic potential 

between the surface and any point in the mass of the suspending liquid. Zeta 

potential is the electrical potential at the shear plane, which is a small distance from 

the surface and separates the mobile fluid from fluid attached to the surface.  The 

zeta potential is a key indicator of the stability of colloidal dispersions.  As the 

surface potential cannot be measured directly, zeta potential can be used to provide 

qualitative information about the electrical properties of the surface.  

In most previous studies that used SCM to interpret U(VI) adsorption to a 

material, the adsorption sites were the hydroxyl groups at the surface of inorganic 

solids (e.g., iron oxides, aluminum oxides, or clay minerals) (Zeng et al. 2009 and 

Xu et al. 2006). SCM can be applied for uranium adsorption to site-specific 

sediments and can be used to predict sorption behavior for untested conditions and 

provide reference information for future in-situ remediation. However, the ability to 

apply SCM to understand the binding of adsorbates to functional groups of organic 
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compounds that are coated on the surface of an inorganic solid had not previously 

been unexplored. Whether or not modeling metal adsorption to such functionalized 

metal oxide sorbents must still consider electrostatic contributions to adsorption in 

addition to the chemical binding to the functional groups remained an open question 

when we designed our experiments. 

Removal of contaminants in groundwater and in columns loaded with 

sorbents is controlled by advective flow, rates of diffusive mass transfer, reactions in 

the aqueous phase and sorption reactions on surface sites.  Column studies have been 

applied to evaluate transport behavior of heavy metals through porous media 

(Qafoku et al. 2005, Surasani et al. 2013).  Many modeling studies have been 

conducted to describe processes affecting metal transport in columns.  When 

integrated with ion exchange or surface complexation, a one-dimensional transport 

model was applied to model the effect of bicarbonate on U(VI) desorption from 

contaminated sediments at the Rifle site (Fox et al. 2012).  A study on arsenate 

removal by an iron oxide-based sorbent in a packed bed used a pore and surface 

diffusion model, where the column is considered to have mobile and immobile zones 

and a diffusion process was included between two zones.  A multi-rate SCM has 

been implemented into a transport model to predict the long-term rate of uranium 

desorption from Hanford sediments (Shang et al. 2014).  Reactive transport models 

can be strong tools to identify and understand the processes that control the fate and 

transport of metals in laboratory and natural systems and provide insights for site 

remediation. 
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1.2 Research Objectives 

The overall objective of this project was to investigate interfacial interactions 

of metals between aqueous and solid phases and determine the dominant 

mechanisms during the uptake process, coupled with modeling approaches. The 

project focuses on metal sorption behavior related to two systems, one as the 

subsurface environments and the other as the drinking water treatment system.  

The fate and transport of U(VI) are strongly related to site-specific subsurface 

environments, where the presence of different constituents (pH, calcium and 

carbonate) can affect the interactions during the phosphate-induced immobilization 

through various pathways. Batch reaction systems represent equilibrium conditions 

and various conditions could be tested to explore the broad reaction mechanisms of 

U(VI) sorption by sediments and the effect of phosphate additions. More importantly, 

non-equilibrium interactions between U(VI) and sediments with the presence of 

phosphate needed to be studied and be more strongly related to the in-situ 

remediation. To improve our understanding towards U(VI) uptake by natural 

sediments and the impact of phosphate addition, two specific research objectives 

were pursued. 

Objective 1: to identify the dominant processes responsible for phosphate-

induced U(VI) immobilization for sediments and groundwater of the Hanford 300 

Area.  

Objective 2: to quantify the extent and longevity of U(VI) uptake under 

equilibrium and non-equilibrium conditions by modeling development. 
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The investigation on the interactions between U(VI) or Cr(VI) and 

engineered nanoparticles and the evaluation treatment efficiency of nanoparticles in 

complex systems can benefit the future development of novel materials and their 

application in real drinking water treatment processes. Surface-modified magnetite 

nanoparticles had not previously been evaluated with respect to systematic variation 

in the water chemistry towards metal uptake. To achieve the understanding of metals 

uptake by novel nanocomposties, two objectives were pursued. 

Objective 3: to identify the impact of surface coatings and water chemistry 

on U(VI) and Cr(VI) adsorption by engineered iron oxide nanoparticles and the 

development of SCM 

 Objective 4: to evaluate nanoparticle adsorption performance with more 

complex and realistic drinking water sources. 

 

1.3 Research Approach 

To meet the objectives outlined above, a series of laboratory experiments 

were designed and conducted. Multiple reactor techniques were used to quantify the 

rate and equilibrium of various solid:water interactions. Batch adsorption 

equilibrium experiments allowed understanding of the fundamental mechanisms of 

phosphate induced uranium retention in sediments and the separation of metals from 

aqueous phase by engineered nanoparticles under equilibrium. Batch kinetic studies 

enabled an investigation of the reaction rate, which reveals the controlling steps 

during the interactions. A set of experiments that required maintenance of CO2-free 
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conditions were performed in a controlled-atmosphere chamber, helping to 

understand the impact of dissolved inorganic carbon on metal sorption behavior. 

Control experiments were always performed to support the experiments. Column 

experiments integrated various physical-chemical processes that are more closely 

related to the real subsurface environments. Controlling the stability and 

maintenance of system were critical for operating the flow-through experiments.  

For both batch and column systems, speciation calculations were used to 

understand the status of aqueous species and interpret the reaction pathways, based 

on measurements of aqueous species. Comparing the results from batch and column 

experiments enabled understanding of the impact of mass transfer processes on 

overall U(VI) transport. In all experiments, an approach was followed that integrated 

aqueous phase analysis, solid phase characterizations and modeling development. 

Inductively coupled plasma mass spectrometry (ICP-MS) was used as the primary 

analytical method for dissolved metal concentrations. Total organic carbon (TOC) 

analysis was used to measure dissolved inorganic carbon/organic carbon 

concentrations. Multiple solid characterization techniques were employed for 

systems with sediments and nanoparticles. X-ray diffraction (XRD) was used to 

identify the mineral compositions of field sediments. Extended X-ray absorption fine 

structure (EXAFS) was used to characterize the atomic coordination environments, 

which was important to understand coordination environments of uranium in 

molecular-scale. Sequential extractions were conducted to determine the mass of 

U(VI) accumulated and identify the dominant species of U(VI) in sediments. Laser 

induced fluorescence spectroscopy (LIFS) was employed to identify the presence of 
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various forms of U(VI)-associated solids.  For the system with nanoparticles, 

transmission electron microscopy (TEM) was used to image synthesized 

nanoparticles to determine the shape and size. Dynamic light scattering (DLS) was 

able to measure the surface potential and the hydrodynamic diameter of 

nanoparticles.   

 

1.4 Overview of Dissertation 

This project was operationally divided into two main tasks, one of each in 

accordance with the four objectives outlined before. Each task included several 

subtasks that are addressed in corresponding chapters. 

Task 1.  Evaluation of the effect of phosphate on the immobilization of 

U(VI) in Hanford sediments, and identification of the processes responsible for 

the immobilization. 

Task 1 was divided into Subtasks 1A and 1B. Subtask 1A evaluated the 

phosphate-induced immobilization of uranium in Hanford sediments and was 

addressed in Chapter 2.  Batch experiments were designed to examine U(VI) 

sorption over a wide range of conditions (U(VI) and phosphate loadings). At the 

conclusion of batch experiments, sediments were analyzed by extended X-ray 

absorption fine structure (EXAFS) spectroscopy to further probe the speciation of 

solid-associated U(VI). Column experiments were conducted to quantify the 

influence of phosphate addition on U(VI) transport at environmentally-relevant 
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conditions. Sediments from the columns were analyzed by sequential extraction and 

fluorescence spectroscopy to characterize the nature of the U(VI) that had been 

immobilized. Equilibrium speciation calculations were performed to support the 

observed U(VI) species formed during reactions.  

Subtask 1B focused on the impact of flow rate on uranium uptake in Hanford 

sediments. Chapter 3 specifically evaluates the interactions between U(VI) and 

sediments by modeling approaches. This subtask examined the effects of two flow 

rates on the transport behavior of U(VI) through sediments by developing a reactive 

transport model based on the one dimensional non-equilibrium convection-

dispersion equation and comparing the model output with data from column 

experiments. Appendix A presents the development of a more advanced reactive 

transport model that considered complicated aqueous reactions and surface 

complexation reactions coupled into a mass conservation equation. It focused on 

interpreting not only the impact of flow rate on U(VI) transport during the uptake 

phase, but also combining the impact of phosphate on the U(VI) transport behavior 

during the release phases. This modeling effort was performed in collaboration with 

a research group with expertise in reactive transport modeling. 

Task 2.  Evaluation of the effect of water chemistry on U(VI) and Cr(VI) 

removal by various engineered magnetite nanoparticles and development of 

surface complexation modeling 

Task 2 is divided into Subtask 2A and Subtask 2B, which are addressed in 

Chapters 4 and 5 respectively. While Chapter 4 explores interactions between U(VI) 
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and three negatively charged engineered nanoparticles, Chapter 5 is focused on 

Cr(VI) and positively charged nanoparticles.  Both chapters present data from 

experiments that were designed to quantify the adsorption of U(VI)/Cr(VI) by 

various nanoparticles as a function of pH and total U(VI)/Cr(VI) concentrations. 

Surface complexation models were developed to simulate the surface properties of 

nanocomposites and to understand the binding of adsorbates to functional groups of 

organic compounds that are coated on the surface of inorganic solid. In Chapter 4, 

the impact of dissolved inorganic carbon on U(VI) adsorption was examined at three 

levels of concentrations and was considered in the surface complexation model. 

Chapter 5 evaluates nanoparticle adsorption performance for Cr(VI) simple aqueous 

solutions as well as with two more complex and realistic drinking water sources.  

With the presence of complex water sources, the stability and surface properties of 

nanoparticles were monitored along with the adsorption behavior of Cr(VI). 

Chapter 6 summarizes the results of the present work and includes 

recommendations for future work. 

In addition to the bench-scale research conducted for the two major tasks, 

understanding the fate and transport of metals are strongly related to field studies. 

Water and soil samples need to be collected from wide distributions to study the 

metal contaminations related to human activities and local development. Appendix B 

presents a study of the detection of heavy metal concentrations in St. Louis urban 

community gardens, which addressed environmental health concerns associated with 

community gardens. Appendix C shows how geochemical analysis can support 

archaeological research to address the impact of ancient metallurgical processes on 



www.manaraa.com

 

 
 

17 

local environments. Appendix D assesses the temporal and spatial variability in 

metal contaminant levels among the main drinking water sources in a city in Haiti, 

which is meaningful in not only for environmental aspects but also with respect to 

human health problems.   
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Chapter 2. Phosphate-Induced 

Immobilization of Uranium in Hanford 

Sediment 

Results of this chapter have been published in Environmental Science&Technology, 

2016, 50, (24), 13486-13494. 

 

Graphical abstract 
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Abstract 
Phosphate can be added to subsurface environments to immobilize U(VI) 

contamination.  The efficacy of immobilization depends on the site-specific 

groundwater chemistry and aquifer sediment properties.  Batch and column 

experiments were performed with sediments from the Hanford 300 Area in 

Washington State and artificial groundwater prepared to emulate the conditions at 

the site.  Batch experiments revealed enhanced U(VI) sorption with increasing 

phosphate addition.  X-ray absorption spectroscopy measurements of samples from 

the batch experiments found that U(VI) was predominantly adsorbed at conditions 

relevant to the column experiments and most field sites (low U(VI) loadings, < 25 

µM), and U(VI) phosphate precipitation occurred only at high initial U(VI) (>25 µM) 

and phosphate loadings.  While batch experiments showed the transition of U(VI) 

uptake from adsorption to precipitation, the column study was more directly relevant 

to the subsurface environment because of the high solid:water ratio in the column 

and the advective flow of water.  In column experiments, nearly six times more U(VI) 

was retained in sediments when phosphate-containing groundwater was introduced 

to U(VI)-loaded sediments than when the groundwater did not contain phosphate.  

This enhanced retention persisted for at least one month after cessation of phosphate 

addition to the influent fluid.  Sequential extractions and laser-induced fluorescence 

spectroscopy of sediments from the columns suggested that the retained U(VI) was 

primarily in adsorbed forms.  These results indicate that in-situ remediation of 

groundwater by phosphate addition provides lasting benefit beyond the treatment 

period via enhanced U(VI) adsorption to sediments.  
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2.1 Introduction 

Uranium is a contaminant of concern in subsurface environments because of past 

weapons production and mining processes as well as natural processes.  In-situ 

immobilization of uranium can avoid the costs associated with pump-and-treat or 

excavation-based remediation strategies.  In natural systems, uranium has been 

observed to be immobilized by the presence of uranyl phosphate minerals (Fuller et 

al. 2002, Jerden and Sinha 2003).  The potential mechanisms responsible for uranium 

immobilization after phosphate addition include precipitation of low solubility 

uranium phosphates, enhanced adsorption to minerals originally present, and 

adsorption or incorporation into newly formed calcium phosphate minerals such as 

hydroxyapatite (Fuller et al. 2002, Mehta et al. 2016, Shi et al. 2009).  Several 

laboratory studies have shown that uranyl phosphate phases can precipitate quickly 

at acidic to circumneutral pH (Kanematsu et al. 2014, Mehta et al. 2014).  

Adsorption of uranium to iron oxides (such as ferrihydrite and goethite) can be 

enhanced by the presence of phosphate through the formation of ternary surface 

complexes and changing surface charge (Cheng et al. 2004, Singh et al. 2012, Singh 

et al. 2010).  

This study investigated the immobilization of uranium in sediments from the 

Hanford site upon phosphate treatment.   At the Hanford 300 Area in Washington 

State, two process ponds received 58,000 kg of uranium from 1943 to 1975 

(Catalano et al. 2006).  The sediments have been well characterized in previous 

studies regarding their mineralogy, uranium species distribution, and adsorption and 

desorption behavior (Catalano et al. 2006, Qafoku et al. 2005, Singer et al. 2009, 
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Stoliker et al. 2013).  Uranium in the subsurface includes both adsorbed and 

precipitated U(VI) species (Singer et al. 2009).  The water table at this site is 

influenced by the stage of the nearby Columbia River, and U(VI) can be mobilized 

from the sediments when the water table rises during high river stages (Arai et al. 

2007, Qafoku et al. 2005). Previous studies indicate kinetically controlled desorption 

of U(VI) from natural sediments. The extent of U(VI) adsorption to natural 

sediments varies depending on sediment mineralogy and the aqueous solution’s 

inorganic carbon level, pH, and total dissolved solids (Barnett et al. 2000, Serne et al. 

2002, Stoliker et al. 2011).  In a field study of polyphosphate injection at the Hanford 

300 Area, uranium concentrations decreased from 80 µg/L to below 30 µg/L due to 

either the formation of uranium phosphate minerals or adsorption to calcium 

phosphate (e.g., apatite) minerals (Vermeul et al. 2009).  We previously studied 

phosphate-induced retention in sediments from the Rifle site in Colorado and found 

only very modest immobilization of uranium (Mehta et al. 2015).  However, the 

effectiveness of phosphate treatment may vary greatly depending on the site-specific 

mineralogy and groundwater chemistry, especially the pH and carbonate 

concentration.  Further, the fate of the U(VI) after stopping phosphate injection 

remains unknown and this study sought to provide insight into U(VI) transport 

during and after phosphate addition to induce immobilization. 

The objectives of this study were to (1) identify the dominant processes 

responsible for phosphate-induced U(VI) immobilization and (2) quantify the extent 

and longevity of immobilization for sediments and groundwater of the Hanford 300 

Area.  While the study was performed with materials from this specific site, they are 
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relevant to other subsurface environments with similar mineralogy and groundwater 

chemistry.  Batch experiments were designed to examine U(VI) sorption over a wide 

range of conditions, especially U(VI) loadings, and these conditions included one 

loading that is directly applicable to the column experiments that explored the effect 

of phosphate on U(VI) fate and transport in sediments.  At the conclusion of batch 

experiments, sediments were analyzed by extended X-ray absorption fine structure 

(EXAFS) spectroscopy to further probe the speciation of solid-associated U(VI).  

Column experiments were conducted to quantify the influence of phosphate addition 

on U(VI) transport at environmentally-relevant conditions.  Sediments from the 

columns were analyzed by sequential extraction and fluorescence spectroscopy to 

characterize the nature of the U(VI) that had been immobilized. 

 

2.2 Materials and methods 

2.2.1 Materials 

Background sediments from the Hanford Formation were collected at four depths (15 

to 41 ft below ground surface) of an uncontaminated portion of the Hanford 300 

Area in Washington and sieved to isolate the <2 mm size fraction. Detailed 

characterization of sediments from this formation in previous studies has shown that 

the dominant minerals by mass are quartz and plagioclase feldspar, with lesser 

amounts of pyroxene and clays (< 5%).  The minerals in the fine fraction of the 

sediments include smectite, vermiculite and iron oxides (Campbell et al. 2012, 

Stoliker et al. 2011, Stoliker et al. 2013, Zachara et al. 2013).  X-ray diffraction 
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analysis of the sediments used in this study show that the mineral assemblages from 

the four different depths were similar to one another and consistent with the 

observations in previous studies (Figure 2.1).  Consequently, 200 g of sediment from 

each depth were combined and physically mixed, with this composite sediment used 

in all experiments.   

 

Figure 2.1. XRD spectra of Hanford sediments collected from 4 depths at the same location.  

The dominant mineralogy for all four depths is the same. For the major peaks, Q: quartz, Pl: 

plagioclase feldspar, Px: pyroxene. 

 

Synthetic Hanford groundwater (SHGW) with a target pH of 8.05 was 

prepared to represent the composition of groundwater at the site (Table 2.1) (Zachara 

et al. 2005).  Ultrapure water (resistivity > 18.2 MΩ-cm) was used.  SHGW was 

prepared in ambient condition as oxic conditions are expected at the Hanford 300  

Table 2.1. Composition of the synthetic Hanford Groundwater 
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Species Conc. (mM) 

 Ca 1.00 
 Na 2.00 
 Mg 0.50 
 K 0.20 
 Ua 3.5×10-3/0 
 Lib 0.13 
 DICc 1.00 

 SO
4
 1.45 

 Cl 1.00 

 NO
3
 0.50 

 Si(OH)
4
 0.50 

 PO4
a 0/1.00 

 Brb 0.13 
Target pH 8.05 

 
a Concentration of 0 corresponds to experimental conditions with U-free or PO4

3--free 
influent feed  
b 

Lithium (Li) and bromide (Br) were added as conservative tracers with the influent for 
calculation of transport parameters 
c 
DIC is dissolved inorganic carbon 

 

Area in the Hanford formation unit (the zone from which the 40 ft samples were 

collected), where the reported DO is around 6.95±1.21 mg/L (Vermeul et al. 2009).  

Bromide was added as a conservative tracer for column experiments (more 

description for SHGW preparation in SI Table S1).  For column experiments, a 3.5 

µM UO2(NO3)2 solution was used during the uptake of U(VI) by the sediments, and 

1 mM phosphate (0.85 mM Na2HPO4·7H2O and 0.15 mM NaH2PO4) was used for 

treatment of U-loaded sediments.  The synthetic groundwater was stored in 

impermeable plastic bags (Tedlar) to minimize gas exchange with the ambient 

atmosphere in order to maintain the desired pH and dissolved inorganic carbon 

concentration.   
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2.2.2 Methods 

2.2.2.1 Batch Sorption Experiments 

Batch experiments were performed with 250 g/L sediment suspensions in freshly 

prepared SHGW with the same compositions as indicated in Table 1 for column 

experiments with the exception of having a range of initial U(VI) and phosphate 

concentrations.  The sediments were pre-equilibrated with SHGW for 48 hours in 

order to stabilize the pH and major ion composition.  After separation, the 

supernatant was discarded and the sediments were re-suspended in fresh SHGW that 

also included U(VI) and phosphate.  The initial U(VI) concentration ranged from 0.1 

to 100 µM with phosphate concentrations of 0, 10, 100, or 1000 µM.  Suspensions 

were shaken on an end-over-end rotator for 48 hours, after which samples were 

centrifuged and the supernatant was decanted and treated for chemical analysis.  All 

the aliquots were filtered through 0.22 µm mixed cellulose ester (MCE) syringe 

filters (Fisher Scientific).  The initial 2 mL of solution were discarded to minimize 

the effects of uranium adsorption onto the filter membranes. Reacted sediments for 

the samples with 100 µM initial uranium and 0, 100, or 1000 µM initial phosphate 

were loaded as wet pastes into polycarbonate sample holders, sealed with Kapton 

tape, and then heat-sealed in polyethylene bags for secondary containment. The 

samples were taken immediately to the Advanced Photon Source (APS) at Argonne 

National Laboratory for speciation of U by extended X-ray absorption fine structure 

(EXAFS) spectroscopy. 
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Sorption kinetics were examined with triplicate suspensions at an initial U(VI) 

concentration of 2.65 µM by combining 30 g of sediments with 120 mL of SHGW in 

polypropylene tubes (250 g/L).  The U(VI) concentration was close to the influent 

U(VI) concentration (~3.5 µM) used in later column experiments.  Aliquots (1 mL) 

of the suspension were taken immediately after mixing and at 0.10, 0.32, 1.0, 3.2, 10, 

30, 102, 316, 960, and 2880 min and treated for chemical analysis.  

 

2.2.2.2 EXAFS Spectroscopy Data Collection and Analysis 

U LIII-edge EXAFS spectra were collected at room temperature on APS beamline 

20-BM-B.  The beamline employed a Si (111) fixed-offset, double-crystal 

monochromator and a toroidal focusing mirror to increase usable flux on the sample 

(Heald 2011, Heald et al. 1999).  Fluorescence-yield data were collected using a 12-

element solid-state Ge energy dispersive detector; 6 to 9 scans per sample were 

averaged to improve the signal to noise ratio.  Energy was calibrated using a Y metal 

foil, setting the first inflection point in Y K-edge to 17038.0 eV.  E0 for the averaged 

U spectra was set to 17173.4 eV to align the EXAFS regions.  Data were processed 

and fitted using the Athena interface to the IFEFFIT software package (Newville 

2001, Ravel and Newville 2005). The spectra of the two samples to which phosphate 

was added were fit as linear combinations of the spectra of the phosphate-free, U(VI) 

reacted Hanford sediment and the uranium phosphate mineral chernikovite, taken 

from Singh et al (Singh et al. 2012).  Reported errors in the percentages of each 

component are the least-squares fitting uncertainties.  Chernikovite and other 

autunite-group minerals have similar sheet structures (Locock et al. 2004a, Locock et 
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al. 2004b, Morosin 1978).  With the identical sheet structure and the very limited 

effect of  the specific cations present between the sheets on the coordination 

environments of the uranium atoms, the autunite-group minerals have similar U 

EXAFS spectra (Catalano and Brown 2004). 

 

2.2.2.3 Column Experiments and sequential Extractions  

Four glass columns (2.5 cm diameter, 15 cm length) were packed with sediments in 

~ 1 cm increments of sediments followed by DI water wetting.  Porous plates (20 µm 

pore size) at the top and bottom of columns distributed the flow and prevented 

movement of particles.  The porosity was 0.29-0.30, which corresponds to a 

solid:water ratio of around  7,000 g/L inside the columns (Table 2.2).  Bromide was 

added to the column influent at a concentration of 1.25 ×10-4 M to be used as a 

conservative tracer.  The groundwater was pumped into the columns in an upflow 

mode at flow rates of ~8.0 mL/h (varied from 7.7 to 8.3 mL/h, adjusted by the 

peristaltic pump), corresponding to pore water velocities of ~1.3 m/d, which is 

within the typical range for groundwater, although higher velocities (e.g. 10 m/d) 

may occur at the Hanford 300 area due to large hydraulic gradients (Qafoku et al. 2005, 

Vermeul et al. 2009). 
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Table 2.2. Physical Properties of Packed Columns. 

  Col-U Col-U-NP Col-U-P Col-U-P-NP 
Sediment (g) 145 145 160 142 
Water (mL)a 22 22 21 22 

Porosity 0.29 0.30 0.30 0.30 
Flow rate (mL/h)b 8.0±0.1 8.0±0.1 8.0±0.1 8.0±0.1 

Pore water velocity (cm/d) 137 131 131 131 
Residence time (hr) 2.63 2.75 2.75 2.75 

a Water used to saturate columns 
b The average flow rate was measured from experiment. Water flux, pore water velocity and residence 
time were calculated based on the flow rate, porosity and volume of columns. 

 

 

Figure 2.2. Operation phases for four columns.  Each phase corresponds to an influent 

composition.  The flow rate was such that one pore volume (22 mL) is equivalent to 2.75 h. 

Black circles mark the end of the operation for each column. 

 

Columns were operated in a series of phases.  A conditioning phase was 

performed in order to remove background or labile U(VI) from the sediment.  Then 

U(VI)-containing SHGW was pumped into columns during an uptake phase.  After 

loading the sediments in the uptake phase, U(VI)-free SHGW was introduced to 
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flush U(VI) out of columns either with phosphate (Col-U-P) or without phosphate 

(Col-U-NP) in Release Phase I.  Finally, for one of the columns that had received 

phosphate, phosphate was removed from the influent during Release Phase II and 

operated for another month (Col-U-P-NP) (Figure 2.2).  Effluent samples were 

collected every 1.5 h (~0.54 pore volume) by a fraction collector (Spectrum/Chrom 

CF-1).  Several stopped-flow events with 12 hour durations (4.4 PV) were applied to 

evaluate the extent to which the sediments were in local equilibrium with the pore 

water.   

At the conclusion of each column experiment, sediments were removed and 

divided into inlet, middle and outlet sections (roughly 5 cm each).  Extractions were 

performed in duplicate on 2 g sub-samples collected from each section and contacted 

with 50 mL of each extractant.  The five-step sequential extraction method was 

modified from the original method of Tessier (Table 2.3) (Tessier et al. 1979).  

Extractant was discarded before adding the extractant for next step’s extraction.  A 

one-step digestion was also performed to directly measure the total uranium in the 

sediments by contacting the sediments with strong nitric acid and hydrochloric acid 

(Campbell et al. 2012). Background concentrations were determined from 

extractions of sediments collected from a column that had gone through a 

conditioning phase identical to that used for the four experimental columns.  For 

sediments from all columns, the extracted U(VI) from one-step acid digestion 

corresponded well with the total U(VI) from sequential extraction (within 15%).   

In order to assess the rate of extraction, a time-dependent sequential 

extraction was conducted with ammonium acetate (extractant in step 2) and then 
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acetic acid (extractant in step 3).  Duplicate samples (8 g each) from each section 

were mixed with 200 mL of extraction solution.  Aliquots of the suspension (1 mL) 

were collected at 0.10, 0.32, 1.0, 3.2, 10, 30, 60, 100, 316 and 960 min and treated 

for chemical analysis. 

 

Table 2.3. Steps in sequential extraction 

Step Target Extract composition pH Time 

1 Water soluble Ultrapure water 5.5 16 h 

2 Exchangeable 1 M ammonium acetate 7.0 16 h 

3 Carbonate 1 M acetic acid/sodium acetate  5.0 16 h 

4 Amorphous oxides 0.12 M ammonium oxalate 

0.11 M oxalic acid 

3.0 4 h 

 

5 Residual Concentrated 8 mL HNO3 and 2 mL 

HCl at 100˚C 

-- 4 h 

 

2.2.2.4 Chemical Analysis of Aqueous Samples 

After filtration, all the aliquots were acidified to 1% HNO3.  Concentrations of 

dissolved U, Ca, Na, Mg, K and Si were measured using inductively coupled plasma-

mass spectrometry (ICP-MS, PerkinElmer). Phosphate concentrations were 

determined by the ascorbic acid method (Clesceri et al. 1999).  Influent and effluent 

samples from column experiments were measured for pH, dissolved oxygen (DO) 

and dissolved inorganic carbon (DIC).  The measurements and results for pH and 

DO are included in the SI.  DIC was measured using the inorganic carbon mode on a 

TOC analyzer (Shimadzu, TOC-LCPH/CPN PC-controlled model).  Bromide was 

measured by an ion selective electrode (Cole-Parmer).  
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2.2.2.5 Laser Induced Fluorescence Spectroscopy (LIFS) Analysis 

Sediment samples from inlet, middle, and outlet sections of the columns were loaded 

into 2 mm × 4 mm × 25 mm quartz cuvettes for analysis.  Detailed procedures for 

LIFS analysis have been described elsewhere (Wang et al. 2005, Wang et al. 2004).  

The cuvettes were attached to the sample holder of a CRYO Industries RC152 

cryostat where the sample was exposed to vaporized liquid helium.  Samples were 

excited at 415 nm with a Spectra-Physics Nd:YAG laser pumped MOPO-730 laser.  

The emitted light was collected at 85°C to the excitation beam, focused into the 

entrance slit of an Acton SpectroPro 300i double monochromator spectrograph and 

detected by a Princeton Instruments PIMAX intensified CCD camera.  The spectra 

were analyzed using the commercial software package IGOR. 

 

2.3 Results and Discussion 

2.3.1 Batch Sorption Experiments 

U(VI) adsorption was enhanced by phosphate addition (Figure 2.3).  Fitting of linear 

adsorption isotherms to the data resulted in Kd values of 0.8, 0.9, 2.0 and 53.8 mL/g 

when phosphate concentrations increased from 0 to 10, 100 and 1000 µM.  The Kd 

value with  
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Figure 2.3. (a). Equilibrium sorption experiments (2 days) with Hanford sediments at initial 

[U(VI)] from 0.1 to 100 µM and 0, 10, 100 or 1000 µM P.  Experiments were conducted 

with SHGW at pH ~ 8.05 at a solid:solution ratio of 250 g/L.  Adsorption isotherms were 

plotted with data for conditions for which precipitation was not anticipated to occur; several 

high concentrations points for the 100 and 1000 µM PO4
3- are not included.  The lines 

indicate the fit of the data to a linear adsorption isotherm model, and the corresponding Kd 

values are 0.8, 0.9, 2.0 and 53.8 mL/g.  Two points with arrows indicate shifted points that 

were characterized by EXAFS.  (b). Uranium LIII-edge EXAFS spectra of Hanford sediments 

from batch equilibrium experiments containing the highest uranium loading (initial U(VI) 

concentration of 100 µM) for each PO4
3- condition. The spectra with 100 and 1000 μM PO4

3- 

were fit as linear combinations of the spectra of the Hanford sediment from the experiment 

with no added PO4
3- and chernikovite. 

 

no phosphate was comparable to that from a previous study (0.8 ~ 1 mL/g) with 

similar sediments and groundwater (Stoliker et al. 2011).  Phosphate addition had a 

greater enhancement of  U(VI) sorption to the Hanford sediments than to Rifle 

sediments examined in a previous study, where Kd values were 0.4, 0.6 and 2.2 for 0, 

100 and 1000 µM phosphate addition (Mehta et al. 2015).  The lower Kd values for 
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the Rifle sediments resulted from the presence of higher Ca (5 mM) and dissolved 

inorganic carbon (7.44 mM) in the groundwater, which promoted the formation of 

soluble uranyl-calcium-carbonate species that decrease the extent of U(VI) retention 

(Mehta et al. 2014, Stewart et al. 2010). 

 With low U(VI) loadings (<10 µM, ~3.5 µM was used in column study), 

increased sorption caused by phosphate could be due to the formation of inner-

sphere U(VI)-phosphate ternary surface complexes or adsorption to newly formed 

Ca-phosphate solids (Fuller et al. 2002, Mehta et al. 2014, Shi et al. 2009).  Based on 

saturation index (Table 2.4) calculations, no precipitation would have been expected 

with initial U(VI) loading in the low concentration range, and the increased U(VI) 

uptake was because phosphate enhanced adsorption of U(VI) to the solid phases.  

The condition used in the column experiments is most similar to that of one of the 

low U loading conditions used here and is most similar to what would occur at field 

sites.  For higher U(VI) loadings (≥ 25 µM, much higher than experienced in 

columns), with increasing phosphate concentration, U(VI) uptake in the solids 

transitioned from adsorption to precipitation.  The addition of 100 µM and 1000 µM 

phosphate led to final solution compositions that are supersaturated with respect to 

autunite (Ca(UO2)2(PO4)2·3H2O) (Table 2.4). The EXAFS spectra of samples at the 

highest uranium and phosphate loadings displayed spectra features intermediate 

between those of U(VI) adsorbed to the sediments in the absence of phosphate and 

autunite-type U(VI) phosphate minerals (Figure 2.3).  These samples correspond to 

the two shifted points (pointed out by arrows) in the isotherm plots (Figure 2.3a) that 

are suggestive of precipitation.  Linear-combination fitting of the spectra show that 
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the 100 μM phosphate sample contained 60 ± 4% adsorbed and 40 ± 6% precipitated 

U(VI) and the 1000 μM phosphate sample contained 22 ± 2% adsorbed and 78 ± 5% 

precipitated U(VI) (Figure 2.3b).  The distribution of U(VI) between adsorbed and 

precipitated forms has been observed previously for U(VI) adsorption to the smectite 

clay mineral montmorillonite in the presence of phosphate at a similar water 

chemistry (Troyer et al. 2016).   

 

Table 2.4. Saturation indices of (SI) of autunite and schoepite for final aqueous solution of 
batch experiments 

SI Phosphate Initial Addition 
10 µM 100 µM 1000 µM 

Initial U(VI) (µM) 
Autunit
e Schoepite Autunite Schoepite Autunite Schoepite 

0.10 - - -3.95 -4.47 -4.46 -5.84 
0.23 -5.31 -4.06 -3.40 -4.19 -3.87 -5.56 
0.46 -4.95 -3.88 -3.04 -4.01 -3.31 -5.27 
0.92 -4.43 -3.62 -2.45 -3.72 -2.75 -4.97 
2.57 -3.46 -3.14 -1.53 -3.24 -1.71 -4.47 
5.13 -2.90 -2.86 -0.96 -2.95 -0.97 -4.10 
10.22 - - -0.28 -2.62 -0.21 -3.72 
24.72 -1.29 -2.01 0.72 -2.11 0.90 -3.14 
49.31 -0.56 -1.63 0.40 -2.12 1.35 -2.91 
98.14 0.58 -1.05 0.35 -1.78 0.86 -3.06 

'-' value not determined 
      

 

2.3.2 Column Experiments 

2.3.2.1 Uranium uptake in the absence of phosphate 
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The profiles of the column effluent concentrations provide information on U(VI) 

adsorption and its subsequent desorption in the presence and absence of phosphate 

(Figure 3).  During the conditioning phase, the labile portion of U(VI) in the initial 

sediments was eluted from the columns.  After running 36 pore volumes (PVs) of 

SHGW through the columns, the effluent concentrations had decreased to below 5 

μg/L.  However, the effluent U(VI) concentration for Col-U-P was still around 70 

µg/L which was hypothesized to be caused by higher initial background U(VI) in the 

sediments of that particular column.  During the uptake phase, the effluent U(VI) 

concentrations for all columns started out low as uranium was adsorbed to the 

sediments and then approached the influent U(VI) concentration after loading U(VI) 

for 147 PV. The reason that the measured effluent concentrations do not match the 

influent concentrations after longer pore volumes in this uptake phase is probably 

because a portion of the effluent U(VI) precipitated in the outlet fitting or tubing that 

was downstream of the sediments in the column.  At around 102 PV, the U(VI) 

effluent concentration began decreasing, which was probably caused by U(VI) 

precipitation in the outlet tubing sections.  Such an accumulation is a limitation of 

these experiments, and the accumulation was confirmed by the release of uranium 

when the outlet fittings and tubing sections were contacted with strong acid (Table 2).  

The accumulation probably occurred because the pressure of CO2 dropped to 

atmosphere levels at the outlet, and this degassing lowered DIC and thus U(VI) 

solubility.  In order to confirm that with less impact from tubing issues the U(VI) 

uptake profiles would have been similar and sediments in columns after the uptake 

phase should have very similar total amounts of U(VI), two additional columns with 
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the same uptake phase operation were considered and mass balance calculations 

were performed for those columns (Chapter 3).   

 

 

Figure 2.4.  Uranium profiles for four columns with different operation phases. Col-U: 

conditioning phase, uptake phase; Col-U-NP: conditioning phase, uptake phase and release 

phase I without P; Col-U-P: conditioning phase, uptake phase and release phase I with P; 

Col-U-P-NP: conditioning phase, uptake phase, release phase I with P and release phase II 

with P removed. During the uptake phase, the decrease and the low effluent U(VI) 

concentration from 102 to 171 PV was because part of the effluent U(VI) was lost before 

being collected (accumulated in the outlet tubing). After replacing new tubing, the U(VI) 

concentration was closer to the influent concentration. 

 

2.3.2.2 Uranium release in the absence/presence of phosphate 

Phosphate enhanced the retention of U(VI) by sediments during the U(VI) release 

phase. The effluent U(VI) decreased faster for the columns that contained phosphate 

in the influent (Col-U-P and Col-U-P-NP) than for the one that did not (Col-U-NP).  

Slower U(VI) release in the presence of phosphate was also observed in a previous 
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study in which sediments were first equilibrated with phosphate-containing solutions 

in batch reactors and then placed into columns for desorption (Shi et al. 2009).  

Phosphate also helped retain U(VI) in columns loaded with Rifle sediments, but the 

extent of retention was much smaller than that observed for the Hanford sediments 

(Mehta et al. 2015). Stopped-flow events led to a significant increase of U(VI) 

concentration in columns without phosphate, which is consistent with observations in 

previous studies explained by slow release of U(VI) from intra-particle domains (Liu 

et al. 2009a, Qafoku et al. 2005).  When phosphate was present the extent of the 

increase in U(VI) concentration during the stopped-flow event was much smaller, 

demonstrating that phosphate enhanced the strength of U(VI) binding to the 

sediments and also slowed the rate of U(VI) release.  

After phosphate treatment, U(VI) was not easily released even when 

phosphate was no longer present in the influent.  When phosphate was removed from 

the SHGW for Col-U-P-NP, the effluent U(VI) concentration increased slightly to 45 

µg/L at around 327 PV before dropping back to 15 µg/L at 349 PV and staying at 

concentrations lower than the drinking water standard of 30 µg/L for the duration of 

the experiment. The temporary increase in effluent U(VI) concentrations that 

occurred following the removal of phosphate from the influent may be associated 

with mobilization of the most labile U(VI) species adsorbed to the exterior of 

sediment grains.   
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Figure 2.5. (a) Calcium profiles for four columns. The target influent calcium concentration 

was 1.0 mM. (b) Phosphate effluent concentrations in Col-U-P and Col-U-P-NP and four 

influent phosphate measurements. 

 

U(VI) phosphates probably did not precipitate  in the columns.  Saturation 

index calculations were carried out based on measured elemental concentrations in 

the effluents to examine the likelihood of U(VI) phosphate precipitation inside the 

columns.  For U(VI) species, the effluents were only supersaturated with respect to 

autunite with saturation index ranges from 0 to 0.2 for the first 20 PV of Release 

Phase I when phosphate containing influents were introduced, and the saturation 
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index then decreased to less than 0 at larger PVs (Table 2.5). Calculations for the 

effluents indicated that solutions were supersaturated with respect to the calcium 

phosphates hydroxyapatite (Ca5(PO4)3OH) and octacalcium phosphate 

(Ca(PO4)0.74H0.22), which is a potential precursor to hydroxyapatite (Table 2.5).  The 

calcium in the effluent decreased when phosphate was introduced to the column 

(Figure 2.5), and  phosphate effluent concentrations only reached 0.81 mM and were 

lower than the influent concentration (~0.90 mM) during the operation period.  The 

difference between influent and effluent concentrations of Ca and P would be 

consistent with the formation of a calcium phosphate solid with a Ca:P molar ratio of 

1.33, which is very close to the ratio of 1.35 in octacalcium phosphate (Mehta et al. 

2016).  U(VI) adsorption to newly formed calcium phosphate minerals probably 

contributes to the enhanced retention of U(VI) in the sediments upon phosphate 

addition.  Immobilization of U(VI) by adsorption to calcium phosphate solids is 

consistent with the findings of our recent batch study in which newly formed calcium 

phosphate solids led to U(VI) removal by adsorption at pH 7.5 (Mehta et al. 2016). 

Table 2.5. Saturation indices (SI) of potential U(VI) and Ca precipitates for effluent samples 

from Col-U-P and Col-U-P-NP 

Phase Column 
Time 
(PV) 

Sch-
oepite 

Chernik-
ovite 

Au-
tunite 

Ruther-
fordine 

Na-
autunite 

Uranyl 
ortho-
phosphate 

Hydroxy-
apatite Calcite 

Octacalcium 
phosphate 

I 

Col-U-
P 

196 -3.38 -5.03 0.26 -5.22 -2.81 -10.3 13.3 0.05 2.42 
240 -4.26 -5.71 -1.14 -6.09 -3.68 -12.5 13.6 -0.00 2.52 

Col-U-
P-NP 

196 -3.5 -5.11 0.13 -5.34 -2.87 -10.6 13.5 0.06 2.47 
240 -4.07 -5.51 -0.75 -5.90 -3.31 -11.9 13.6 -0.02 2.51 

II Col-U-
P-NP 

294 -4.31 -6.34 -2.47 -6.14 -5.32 -13.8 11.6 -0.07 2.02 
465 -4.59 -8.92 -7.54 -6.42 -10.8 -19.3 5.17 0.03 0.42 
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2.3.2.3 Sequential extractions  

The sequential extraction results confirmed the finding that phosphate enhanced the 

retention of U(VI) (Figure 2.6).  The distribution of extracted U(VI) in the different 

sections (inlet, middle, and outlet) was quite uniform for Col-U-P and Col-U-P-NP.  

After the conditioning phase, around 1.5 μg U(VI)/g could still be extracted from the 

sediments, and this recalcitrant uranium baseline would be present in all the 

sediments from the columns (Table 2.6).  Most U(VI) fractions from Col-U were 

extracted as labile forms in steps 2 and step 3, showing that the majority of U(VI) 

accumulated as ion exchangeable and weak-acid extractable forms. 

 

 

Figure 2.6.  Sequential extraction results of extracted U(VI) from column sediments and 

background sediments. Error bars represent standard errors for the data obtained from 

samples for each column. The extracted U(VI) for each column is reported as the average 

amount from three sections. 

 



www.manaraa.com

 

 
 

41 

When U(VI)-free groundwater with no phosphate was introduced to Col-U-

NP, 87% of the U(VI) that had accumulated during the uptake phase was washed out 

of the column.  In contrast, when U(VI)-free groundwater with phosphate was 

introduced to Col-U-P, 26% of the U(VI) that had accumulated during the uptake 

phase was washed out.  Extracted U(VI) in the water soluble form became negligible 

and a small amount of U(VI) in ion exchangeable forms was lost compared to Col-U.  

Most retained U(VI) was extracted in steps 2 and 3, which are the same steps in 

which uranium was extracted from the U-loaded sediments before phosphate 

treatment (Col-U).   The accumulation of U(VI) in ion-exchangeable and weak acid 

extractable forms is consistent with the U(VI) being present as adsorbed species 

rather than low solubility U(VI) phosphate precipitates.  After stopping phosphate 

addition in Col-U-P-NP, there was an insignificant decrease in the amount of U(VI) 

(0.15±0.58 µg/g) from ion exchangeable and weak acid extractable fractions 

compared to Col-U-P, indicating a lasting impact of phosphate addition.  Sequential 

extractions in a previous study with Rifle sediments showed that only 55% of U(VI) 

was retained in the column due to the addition of phosphate,(Mehta et al. 2015) but 

as mentioned earlier the conditions at the site are less favorable for phosphate-

induced U(VI) immobilization. 

 

2.3.2.4 LIFS determination of likely U(VI) species present  

LIFS spectra of samples from Col-U, Col-U-P and Col-U-P-NP provide further 

evidence for adsorption as the dominant immobilization process in the columns 

(Figure 2.7). The U concentrations in the column sediments were too low for EXAFS 
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analysis.  Most LIFS spectra were very similar with bands at ~512 and 534 nm and a 

weaker band at ~562 nm appearing in spectra for Col-U (all three sections), Col-U-P 

(inlet and mid sections) and Col-U-P-NP (inlet and mid sections) (Figure 5 a-e, g-h).  

All spectra are very different from recently reported ones for samples that had U(VI) 

precipitated as Na-autunite (Figure 5k) in a calcium and phosphate solution (504.0, 

526.5 and 550.0 nm) or other crystalline uranyl-phosphate mineral phases which 

display intense, well-resolved spectra with the first vibronic band appearing between 

499.4 nm and 503.8 nm (Wang et al. 2008).  Instead, the spectra closely resemble 

those previously reported U(VI) adsorbed to Hanford 300 area sediments with bands 

at 498.6, 519.7, 542.1 and 564.5 nm (Figure 5j) (Mehta et al. 2016),(Wang et al. 

2011b).  The similarity among the spectra for the different samples from the columns 

indicates that the differences in U(VI) speciation responsible for the enhanced 

retention of U(VI) from phosphate addition are subtle and that the general structure 

of the adsorbed species remains similar.  Minor spectral differences such as the 

better resolved bands at 498, 518, 542 and 565 nm for the outlet section of Col-U-P 

(Figure 2.7 f) and the poorly resolved spectra of the outlet section of Col-U-P-NP 

(Figure 2.7 i) likely reflect the heterogeneous nature of the sediments.  The broad 

spectra for all the samples compared to the reference samples were due to the 

relatively low U(VI) loading in our samples. 
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Figure 2.7.  Fluorescence spectra of U(VI) sorbed on Hanford sediments from different 

depths in column experiments and the prepared reference U-species.  All spectra were 

normalized to the same maximum intensity.  

 

2.3.3 Comparison between mass balance calculations and sequential 

extractions 

Mass balance calculations were performed based on the difference between the 

influent and effluent U(VI) concentration to obtain accumulated and released U(VI) 

amounts (Equation 2.1).  
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Umass 𝑢𝑢𝑢𝑢𝑢𝑢𝑠 �
µg
g �

=  
∑[(Cin  − Cout) ∗ Q ∗ t]

msed
                               (Equation 2.1) 

where Cin and Cout represent U(VI) concentrations in the influent and effluent (µg/L), 

Q is the flow rate (L/h), and t is the time duration between the collection of each 

effluent sample (h), msed represents the mass of sediments loaded in each column (g). 

For the column study, several problems came up during the operation. During 

the conditioning phase, higher U(VI) effluent concentrations were observed for one 

of the columns (Col-U-P).  This may have been due to those sediments possibly 

containing more U(VI) than those used in other columns, despite efforts to 

homogenize the sediments before loading them into the columns. Although 70 ug/L 

was high compared to the effluent of the other three columns, it was relatively low 

compared to the influent concentration during the uptake phase.  

During the uptake phase, the long term operation and the drop of CO2 

pressure to atmosphere levels at the outlet led to the precipitation of U(VI) in outlet 

sections of tubing. In order to consider this portion of U(VI) in the mass balance 

calculation, strong HNO3 was added into the tubings to wash the precipitates out, and 

the concentrations in those known volumes of acid were then measured.  The 

calculated masses of U in the tubing sections were added together and then 

considered as ones to be excluded from the calculated amount of U(VI) that had been 

taken up in the sediments based on the influent and effluent concentrations (Table 

2.6).   
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Table 2.6. Released and accumulated amounts of U(VI) from mass balance 

calculations applied to the   U(VI) profile in Figure 3.  

 µg U(VI)/g sediments Col-U Col-U-NP Col-U-P Col-U-P-NP 
 Conditioning 0.13 0.11 0.8 0.16 

Uptake 
U(VI) uptake (Influents - Effluents)* 9.28 6.55 4.63 7.57 
U(VI) precipitated in tubing sections 3.30 1.13 1.25 1.68 
Calculated U(VI) accumulated in sediments* 5.98 5.42 3.38 5.89 

Release 

Release I - 2.25 0.71 0.79 
U(VI) precipitated in tubing sections 
(Release I) - 0.14 0.05 0.07 

Release II - - - 0.69 
Calculated U(VI) release from columns - 2.39 0.76 1.55 

*: The mass balance calculation for the third row ‘U(VI) uptake (Influents – Effluents)’ still 
have high uncertainty (as the tubings were not replaced in time) that also leads to high  
uncertainty in the row ‘Calculated U(VI) accumulated in sediments’. 

 

Table 2.7. Total U(VI) extracted from the sediments after column experiments. 

Mass of U(VI) (µg/g) BG Col-U Col-U-NP Col-U-P Col-U-P-NP 
Sequential Extraction 1.50±0.30 4.57±0.58 1.89±0.24 3.77±0.26 3.62±0.32 

 

 

After changing the tubing at 171 PV, U(VI) concentrations increased and 

approached the influent concentration as expected. In Table 2.6, uncertainty still 

existed in the number for uptake of U(VI) as the tubings issue was observed after 

significant decrease of U(VI) effluent concentration was observed and because one 

set of earlier tubing sections was no longer available to be digested. Fortunately, for 

the two release phases studied, the tubings were changed frequently and the 

acidification of the tubings showed only small amounts of U in them (Table 2.6), 

thus interactions with the outlet tubings would not significantly influence the release 

profile. 
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For the comparison between sequential extraction with the mass balance 

calculation, the extracted U(VI) from background sediments should be considered as 

the part of U(VI) that could not be removed in the column system, thus it was not 

included in mass balance calculation. For the first four columns, because of the 

uncertainty that existed in the uptake amount of U(VI), the comparison between the 

net accumulation from mass balance  calculations and sequential extraction was not 

ideal. Otherwise, most columns had good agreements between the masses of uranium 

in the sediments determined by sequential extraction and from influent/effluent 

information from several aspects.  From mass balance calculation, 0.76 µg/g 

(0.71+0.05) of U(VI) was released from Col-U-P during the Release Phase I, while 

the difference between Col-U and Col-U-P in the sequential extraction was 0.80±0.84 

µg/g (Table 2.7).  From mass balance calculation, 2.39 µg/g of U(VI) was released 

from Col-U-NP during the Release Phase I, while the difference between Col-U and 

Col-U-NP in the sequential extraction was 2.68±0.82 ug/g. 

 

2.4 Implications for Uranium Transport in 

Subsurface Systems  

The study demonstrated the influence of phosphate on U(VI) transport in 

environmentally relevant sediments.  Batch experiments confirmed that both 

adsorption and precipitation could contribute to U(VI) retention depending on the 

exact uranium and phosphate concentrations present.  The specific concentrations in 

the column study as well as the high solid:water ratio in the column and occurrence 
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of advective flow make the results of the column most directly relevant to subsurface 

environments.  Once phosphate is introduced, sorbed U(VI) would be harder to 

mobilize, which could largely limit the desorption of U(VI) during advective flow 

and hence decrease the downgradient U(VI) concentrations.  Retention of U(VI) 

following phosphate addition to the Hanford sediments was shown to be due to 

enhanced adsorption of U(VI) species, including U(VI) adsorption to freshly formed 

calcium phosphate minerals, instead of formation of U(VI)-phosphate precipitates.  

The treatment efficiency will depend on the specific subsurface geochemical 

conditions of contaminated sites.  Phosphate addition can be more effective for sites 

such as the Hanford site (i.e. as opposed to the Rifle site) that have lower dissolved 

inorganic carbon concentrations.  Although not studied here, the pH of the 

groundwater would play an important role in affecting U(VI) immobilization.  At 

lower pH, various processes would change.  First, U(VI) would mainly exists as 

U(VI)-hydroxide species instead of U(VI)-carbonate species, which affects U(VI) 

mobility.  If carbonate remains the same, then adsorption of U(VI) to sediments 

decreases when pH is lower than 4 ~5 because of the protonation of the mineral 

surfaces.  The pH would also affect the mechanisms for U(VI) immobilization. It has 

been reported that U(VI) can precipitate as autunite at low pH (4,6) but will 

primarily be adsorbed to or incorporated into calcium phosphate solids under similar 

experiment conditions.(Mehta et al. 2016)  After introducing phosphate for a while, 

the effect on retention could last for a long duration without addition of phosphate, 

which can limit the costs and possible environmental impacts (e.g., eutrophication) 

that would be associated with larger and longer additions of phosphate.  As slow 
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U(VI) desorption from sediments may occur after ending phosphate addition, U(VI) 

release can be slowed and the released concentration may be controlled effectively 

by optimizing the timing and doses of phosphate addition. 
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Chapter 3. Modeling Uranium uptake 

in Hanford sediments and the impact of 

flow rate 

3.1 Introduction 

Phosphate addition resulted in enhanced retardation of U(VI) transport 

through columns loaded with Hanford sediments as discussed in Chapter 2. Both 

batch and column studies showed enhanced U(VI) adsorption to Hanford sediments.  

The stopped flow event discussed in Chapter 2 has demonstrated the non-equilibrium 

U(VI) adsorption process.  However, the behavior has not been interpreted with 

modeling approaches.  

Recharge and discharge of U(VI) of the vadose zone occur with the seasonal 

fluctuation of groundwater. One field-scale uranium transport study reveals that 

multirate sorption/desorption, surface complexation reactions are important to 

determine U(VI) migration in the field. One Stoliker’s study reveals that adsorption 

of uranium on Hanford sediments varies with changing water chemistry (Stoliker et 

al. 2011). A generalized composite surface complexation modeling has been applied 

for the adsorption to complex compositions of sediments, considering hydrogen ion 

and carbonate concentrations. The results showed that for specific aqueous 
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composition, single-reaction one-site (sites with the same binding strength) could 

approximate the adsorption process.  

In the field site, it is possible that the time scale of adsorption could exceed 

that of transport. As a result, kinetic studies on sorption behavior of U(VI) with 

Hanford sediments are also an important process to understand the transport of U(VI) 

and have been believed to be one factor for the plume longevity. The release process 

was slow in 300 area (Zachara et al. 2013). In the above adsorption batch experiment 

(Stoliker et al. 2011, Stoliker et al. 2013)), 500 – 1000 h was required to reach 

adsorption equilibrium, where mineral dissolution changes the chemical conditions 

of the aqueous equilibrium state. Smith’s study (Smith and Szecsody 2011) 

investigated the effect of contact time on the extraction of U(VI) by using carbonate 

and acetic acid. The results showed the chemical alternation of uranium-sediment 

association along with the contact time. In this study, time-dependent extraction and 

continuous leach by carbonate (pH=9.3) and acetic acid (pH=2.3) solutions were 

conducted with sediments that has been incubated for different durations. Time-

dependent batch extraction showed a rapid initial release followed by a slow increase. 

The fitting results indicated that the release process was not a simple diffusion or 

first-order process. In the batch study, a two process model was used, including a 

rapid desorption process followed by first-order release process, possibly due to 

dissolution of mineral phases. Both experiments showed an increasing resistance to 

extraction with longer incubation, which could be caused by an increase in U-

mineral adsorption strength (recalcitrant).  
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Transport models have been set up in many studies. In a kinetic study of 

short-term U(VI) sorption (Qafoku et al. 2005), CXTFIT was used to determine 

transport parameters of Br and a one dimensional distributed rate coefficient model 

was used to describe U behavior. In this 1-D distributed rate coefficient model, first-

order rate coefficients for a hypothetical assemblage of reaction site groups were 

fitted according to a r-distributed statistical model, assuming the first-order rate 

coefficients followed a gamma probability distribution. The distribution coefficient 

(Kd) was assumed as a single value for all sorption sites. Long tailing phenomena 

occurred for columns which indicated sorption-related non-equilibrium conditions. 

A long term kinetic study of uranyl desorption was performed with column 

experiments (Shang et al. 2014). In the reactive transport model, advection 

dominates the mobile domain and diffusion dominates the immobile domain. 

Multirate SCM is also applied here in both domains. In addition to the dual domain 

transport model and multirate SCM, which were also used in previous studies, here 

an additivity model was applied to incorporated with them. Two types of additivity 

models were used separately, one considered grain size properties and one 

considered composite-based properties. The characterization of sediments with 

different size factions was consistent with previous result, where they had variable 

surface area and labile U(VI) content.  

The objective of the experiments presented here was to (1) quantify U(VI) 

uptake by sediments in batch system with surface complexation modeling, (2) 

simulate U(VI) adsorption by a multi-rate first order reaction model, (3) predict U(VI) 
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transport through column systems under two flow rates and (4) interpret the time-

dependent sequential extraction results.  

 

3.2 Materials and Methods 

3.2.1 Materials 

Sediments used in the kinetic adsorption and column experiments were described in 

Chapter 2. Synthetic Hanford groundwater (SHGW) with a target pH of 8.05 was 

prepared to represent the composition of groundwater at the site (Table 2.1) (Zachara 

et al. 2005).  

 

3.2.2 Kinetic adsorption 

Sorption kinetics were examined with triplicate suspensions at an initial U(VI) 

concentration of 2.65 µM by combining 30 g of sediments with 120 mL of SHGW in 

polypropylene tubes (250 g/L).  The U(VI) concentration was close to the influent 

U(VI) concentration (~3.5 µM) used in later column experiments.  Aliquots (1 mL) 

of the suspension were taken immediately after mixing and at 0.10, 0.32, 1.0, 3.2, 10, 

30, 102, 316, 960, and 2880 min and treated for chemical analysis.  

 

3.2.3 Column experiments 

The experiment set up has been demonstrated in Chapter 2. For column experiments, 

a 3.5 µM UO2(NO3)2 solution was used during the uptake of U(VI) by the sediments, 
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and 1 mM phosphate (0.85 mM Na2HPO4·7H2O and 0.15 mM NaH2PO4) was used 

for treatment of U-loaded sediments.  Column 5&6 were operated at a flow rate of 8 

mL/h and Column 7&8 were operated at 16 mL/h. Column 5 and Column 7 went 

through the conditioning phase and uptake phase. Column 6 and Column 8 went 

through the conditioning phase, uptake phase and the release phase with the presence 

of phosphate. 

 

Figure 3.1 Operation phases for Column 5 to 8.  Each phase corresponds to an influent 

composition.  The flow rate was such that one pore volume (22 mL) is equivalent to 2.75 h 

for Column 5 and 6, 1.38 h for Column 7 and 8. Black circles mark the end of the operation 

for each column. 

 

3.2.4 Time dependent Sequential Extractions 

The sequential extraction procedures have been described in Chapter 2. After the end 

of column experiments (for Col-U, Col-U-P and Col-U-P-NP), 2 g of sediments from 

each session were collected and extracted to obtain U(VI) in five forms. In order to 

assess the rate of extraction, a time-dependent sequential extraction was conducted 

with ammonium acetate (extractant in step 2) and then acetic acid (extractant in step 
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3).  Duplicate samples (8 g each) from each section were mixed with 200 mL of 

extraction solution.  Aliquots of the suspension (1 mL) were collected at 0.10, 0.32, 

1.0, 3.2, 10, 30, 60, 100, 316 and 960 min and treated for chemical analysis. 

 

3.3 Results and Discussion 

3.3.1 Modeling adsorption experiments in batch system 

Adsorption kinetics showed that adsorption was initially very rapid and then 

had slower continuing uptake (Figure 3.3).  The continuing slower adsorption was 

controlled by either chemical or physical limitations to adsorption.  Some previous 

studies confirmed the presence of fast and slow intra-particle diffusion domains in 

the sediments.(Bai et al. 2009, Liu et al. 2006)  The adsorption process was predicted 

with a model including an initial period with instantaneous uptake in the first 20 s 

and a second period with rates described by an established equation for a multi-rate 

sorption process with a first-order rate coefficient ki (L/kg-hr) following a log-

normal distribution.  The ability of the multi-rate sorption model to fit the data is 

consistent with intra-particle mass transfer process playing a role in the uptake of an 

adsorbing contaminant by heterogeneous porous media (Bai et al. 2009, Liu et al. 

2009a, Qafoku et al. 2005). 
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Figure 3.2. Schematic figure of a log-normal distribution for the first-order reaction constant. 

 

The rate of adsorption was initially very rapid and then slower with 

continuing uptake.  The rapid uptake is described as instantaneous uptake for the first 

20 s. The period of slower uptake begins at 20 s and with an aqueous U(VI) 

concentration of 524 μg/L at that time. The slow uptake process is described by a 

model which has a log-normal distribution of first-order rate coefficients ki (L/kg-hr) 

(Figure 3.2). The distribution has a log-normal mean μ (log(L/kg-hr)) and a log-

normal standard deviation σ (log(L/kg-hr)). Each ki is the averaged value in each 

interval (Bai et al. 2009):  

dC𝑏
𝑑𝑑

= −𝑆𝑆𝑆∑ 𝑓𝑖𝑢𝑖𝑛
𝑖=1 (𝐶𝑏 − 𝐶𝑝,𝑖)                   (Equation 3.1) 

Cb is the bulk [U(VI)] (μg/L), Cp,i (μg/L) is [U(VI)] in the intra-particle pore solution 

for site i. The distribution is evenly discretized into n sites and 100 was used for n. 

 For each site i, 

  dS𝑖
𝑑𝑑

= 𝑢𝑖�𝐶𝑏 − 𝐶𝑝,𝑖�                                 (Equation 3.2) 

  𝑆𝑖 = 𝐾𝑑 ∙ 𝐶𝑝,𝑖                                             (Equation 3.3) 
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where Si (μg/kg) represents sorbed U(VI) in site i, Kd ((μg/kg)/(μg/L)) is the partition 

coefficient.  The value of Kd for use in the model was taken from the sorption 

isotherm with no phosphate. The total U(VI) is the sum of the dissolved U(VI) and 

the total sorbed U(VI) from all sites.  The model was numerically solved using a 

backward-in-time finite difference method. The selected result was chosen when a 

minimum sum of the square of the residuals was achieved, which is the sum of the 

difference between experimental data and predicted results.  

 

 

Figure 3.3.  Kinetic adsorption with initial U(VI) concentration of 630 µg/L, at pH ~ 8.05 

with solid:solution ratio 250 g/L. The multi-rate first order kinetic sorption model was 

applied beginning at 20 s with a dissolved U(VI) of 524 µg/L at that time. Error bars from 

duplicate experiments are smaller than the points. 
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Figure 3.4: SCM for U(VI) adsorption to Hanford sediments at pH ~8.05. Blue points are 

batch-isotherm experiments data and the yellow point is the equilibrium point from the 

kinetic study. 

 

The adsorption isotherm with no phosphate has been fitted well by the same 

reactions and equilibrium constants as were used in a previous study (Figure 3.4) 

(Stoliker et al. 2011).  The successful application of a non-electrostatic model can be 

due to the complicated composition included in the sediments leading to no change 

of surface electrostatics over the range of conditions studied. The slightly low 

estimated result might be because of small difference in groundwater compositions. 

 

3.3.2 Uranium transport under different flow rates and modeling by 

CXTFIT 

U(VI) breakthrough profiles in Column 5 to 8 followed similar features as observed 

in preciously discussed four columns in Chapter 2, where during the uptake phase, 

effluent U(VI) concentrations increased slowly and finally reached the influent level. 

However, the flow rate was observed to affect the U(VI) profile. The U(VI) 
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concentration in the effluent began to increase after less cumulative water had passed 

through the columns at the higher flow rate in Columns 7 and 8 compared to 

Columns 5 and 6 (Figure 3.5).  At the higher flow rate, there was less time for U(VI) 

to diffuse into intragranular pores when the same amount of SHGW had passed 

through columns. Ultimately less U(VI) was retained in the columns, suggesting that 

the rate of U(VI) retention is limited by mass transfer from the mobile pore water 

into immobile water in intragranular pores. 

 

Figure 3.5.  U(VI) and Br profiles for Columns 5-8. Symbols represent experiment data and 

smooth lines are the prediction results from reactive transport model by CXTFIT, with 

parameters in Appendix (Table 2). Column 5 and 7: conditioning phase, uptake phase; 

Column 6 and 8: conditioning phase, uptake phase and release phase with P. Br profiles were 

plotted as Ceff/Cinf times the influent U(VI) concentration. 

 

In transport reactive modeling, a non-equilibrium model is used to fit Br and 

U transport behavior in columns based on the assumption that the aqueous phase can 

be partitioned into mobile and immobile regions, which is called a dual domain 

reactive transport model (Tang et al. 2009). The dimensionless equation:  

 𝛽𝑆 𝜕𝐶𝑚
𝜕𝑅

= 1
𝑃𝑃

𝜕2𝐶𝑚
𝜕𝑋2

− 𝜕𝐶𝑚
𝜕𝑋

− 𝜔(𝐶𝑚 − 𝐶𝑖𝑚)            Equation 3.4 
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 (1 − 𝛽)𝑆 𝜕𝐶𝑖𝑚
𝜕𝑅

= 𝜔(𝐶𝑚 − 𝐶𝑖𝑚)                 Equation 3.5 

where m and im indicate the mobile and immobilize zones respectively, R=1+ ρb kd/ θ,  

ρb is the bulk density (kg/m3), Pe=vL/DL=L/λ, and C=c/co, where λ is the dispersity, 

kd is partition coefficient and θ is the porosity, ω is dimensionless mass transfer 

coefficient  

𝜔 =  𝛼𝛼
𝜃𝜃

                            Equation 3.6 

         𝛽 =  𝜃𝑚+𝑓𝜌𝑏𝐾𝑑
𝜃+𝜌𝑏𝐾𝑑

               Equation 3.7 

where α is the first-order mass transfer coefficient (s-1) between the mobile and 

immobile liquid regions, θm as the mobile pore water content and f is the fraction of 

adsorption sites that equilibrates with the mobile liquid phase. 

In the modeling practice, Pe, β(Br), β(U) and ω (ω =ηDo, Do as molecular 

diffusion coefficient in water) would be needed in non-equilibrium equation (MIM). 

Using these variables in the MIM equation could give predicted C/Co. The objective 

function SSR is the sum of the difference between experimental C/Co and predicted 

C/Co. The above formula input data are calculated based on R, λ (different for Br 

and U), θm/θ, f and η (geometric factor). While retardation fact R is a guessed value, 

other variables are estimated based on ‘Solver’ to achieve a minimum SSR.  

Columns 5, 6 (duplicates, set 1) were operated with flow velocity of 130 

cm/day while columns 7 and 8 (duplicates, set 2) were operated with 260 cm/day. 

From uranium profile, it can be observed that under high flow rate, the time needed 

for effluent uranium concentration to reach half of influent concentration decreased 
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significantly, which indicates that uranium was not retained as efficiently as in 

columns with low flow rate. Based on operation conditions for four columns, several 

constraints should be achieved in CXTFIT if this model works. Col 5, 6 or Col 7, 8 

should be fitted with the same set of parameters R, (β(Br), β(U) and ω) except that 

they would have different peclet numbers, Pe. The model should give different 

dispersivities for two sets of columns because of different velocities. For example, 

λ(Br, Col 5, 6) should be close to twice of λ(Br, Col 7, 8) and λ(U, Col 5, 6) would 

be close to twice of λ(U, Col 7, 8). In the same set of columns, there is also a 

relationship between λ(Br) and λ(U) as despersivity is related to molecular weight. 

As each parameter could be fitted individually, Br profiles were fitted first and the 

above relations among λ(Br) for four columns were achieved by slightly changing λ 

manually. Then U profiles were fitted with Br profiles simultaneously. CXTFIT 

could predict each column very well separately with different parameters. In order to 

obtain relations between λ(Br) and λ(U) in same column and λ(U) in different 

columns as described above, λ were slightly changed manually and same set θm/θ, f 

and η values were used. As a consequence, best fits were not achieved (Table 3.1).  

For Col 5 and Col 6, CXTFIT over predicted effluent uranium concentration 

at the beginning time period (Figure 3.6a and 3.6b) while for Col 7 and Col 8, there 

was an under prediction for similar beginning time period (Figure 3.6c and 3.6d). It 

can be concluded that this simplified non-equilibrium transport modeling has 

limitations to fit uranium transport behavior under different flow rates with the 

assumption that only adsorption accounts for the retardation and reaction rate is a 

constant. If adsorption was the only mechanism, the process could still be mass-
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transfer rate limited as the time scale of adsorption may be longer than the residence 

time. As a result, when flow rate increases, less uranium would be adsorbed and 

contributed to the earlier breakthrough of uranium.  

  

 

Figure 3.6. Effluent Concentration (C): Influent Concentration (C0) profile of Br and U in 

flow-through column experiments (symbols) and non-equilibrium transport model fits (lines). 

         

In order to get a better prediction for uranium transport behavior, it would be 

likely that more zones (a third zone) could be added which exhibits properties 

between mobile zone and immobile zone, with mass transfer between two nearby 

zones. More distributed zones might be able to take account the over predicted part 

in low flow rate columns and under predicted part in high flow rate columns. Also a 
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multi-rate adsorption could be considered with the change of surface complexed 

uranium on mass-transfer sites. Adsorption rate would not be a constant because of 

increased amount of uranium retained in the sediment rather it would be a function 

of aqueous chemical components, such as surface area and site density of adsorption-

sites. In many reported articles, a multi-rate surface complexation model was used 

where rates of adsorption were calculated by considering mass transfer rates and 

equilibrium aqueous chemistry along with the operation time. The mass transfer 

coefficients were described by a lognormal probability distribution but would be 

calculated as a finite number (Qafoku et al. 2005, Shang et al. 2014, Stoliker et al. 

2013). In conclusion, both more zones and multi-rate surface complexation would be 

helpful for non-equilibrium modeling to better fit uranium transport under various 

flow rates. 

 

Table 3.1. Transport parameters for column experiments 

Column Peclet number 
for Br 

Peclet 
number for U 

Retardation 
factor R 

Mobile water 
fraction for U 

Dimensionless 
mass transfer 
coefficient ω 

5 2.36 6.00 24.3 0.52 0.27 

6 2.36 6.00 24.3 0.52 0.27 

7 4.99 10.12 24.3 0.51 0.27 

8 4.99 10.12 24.3 0.51 0.27 

 

3.3.3 Sequential extractions and comparison to the mass balance 

calculations 
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The sequential extraction results showed that after the release phase with the 

presence of phosphate, most U(VI) was retained in sediments and the lost amount of 

U(VI) was from the most labile forms (Figure 3.7). The distribution of U(VI) from 

the column did not have significant decreasing trend, which is consistent with the 

column behavior described in Chapter 2. Due to the accumulation of U(VI) in first 

four columns, the comparison between mass balance calculation and sequential 

extraction showed differences and the accumulation has been largely avoided in 

Column 5 to 8. As a result, a more precise match could be obtained between mass 

balance calculation and sequential extraction. 

For Column 5 and Column 6, they were consistent with each other from the 

profile and the net uptake were 2.05 and 2.19 µg/g from mass balance calculation 

(Table 3.2). The calculated net accumulation for Column 5 and Column 6 were 2.05 

and 1.53 µg/g at the time that the sediments were removed for sequential extractions 

(Table 3.3). Those sequential extractions yielded concentrations of 1.65±0.63 µg/g of 

accumulated U for Column 5 and 1.19±0.63 µg/g for Column 6, which was within 

80% and 78% of mass balance estimate, respectively. Sequential extraction gives 

more reliable results as it directly measures the U(VI) associated with the sediments. 
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Figure 3.7. Sequential extraction results for U(VI) extracted from sediments removed in 

three sections from (a) Col-U, (b) Col-U-NP, (c) Col-U-P, and (d) Col-U-P-NP. Error bars 

represent the standard error for the data obtained from duplicate samples. Blue: inlet sections, 

red: mid sections, green: outlet sections of each column. 

 
 
 
Table 3.2. Released/accumulated amount of U(VI) from mass balance calculation from 

U(VI) profile in Figure 3.5. 

µg U/g sediments Column 5 Column 6 

Sediments (g) 150 149 
Conditioning (µg/g) 0.24 0.18 

U(VI) (Influents - Effluents) (µg/g) 2.27 2.53 
U(VI) precipitated in tubing sections (µg/g) 0.22 0.34 

Calculated U(VI) accumulated in sediments(µg/g) 2.05 2.19 
Mass Released (µg/g) - 0.66 

Net accumulation (µg/g) 2.05 1.53 
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Table 3.3. Total U(VI) extracted from the sediments for additional two columns. 

Mass of U(VI) (µg/g) BG Column 5 Column 6 
Sequential Extraction 1.50±0.30 3.15±0.33 2.69±0.33 

 

3.3.3 Time-dependent sequential extractions 

Sediments after column experiments from Col-U, Col-U-P and Col-U-P-NP went 

through the time-dependent sequential extraction process. The extraction rate 

experiment showed a rapid initial release followed by a slow release process for all 

samples (Figure 3.8).  This biphasic release was observed with two different 

extractants.  The slow desorption was possibly due to the diffusion of U(VI) from 

intra-particle pores to bulk solution, which was consistent with the adsorption rate 

experiments that also had a slow mass transfer period that was probably due to 

intraparticle diffusion.  Equation (S5) was used to approximate the release process, 

where the final concentration (CT) (µg/g ) was considered as the total U(VI) in 

sediments at the beginning, C(t=0) represents an instantaneous release and C(t) – 

C(t=0) represents U(VI) released from a slow process with the time. 

  𝐶(𝑢) = 𝐶𝑅 − 𝐴 ∙ 𝑢−𝑘∙𝑑                                     Equation 3.8 

Approximately 30 to 39% of U(VI) was released instantaneously, which is close to 

the fraction of adsorption (36%) that could be considered to be instantaneous.  The 

reaction rate coefficients were in the same magnitude and the percentages of 

instantaneous release along the desorption process were similar for all samples with 

and without phosphate treatment (Table 3.4 and 3.5).  The immobilized U(VI) still 

has similar mobility by the same extraction solutions before and after phosphate 

treatment.  This could be because the differences in the strength of U(VI) binding to 
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the sediments are smaller than the differences that would be detectable by the 

different extraction processes.  In addition, the phosphate is not affecting the intra-

particle mass transfer processes that are probably responsible for the rate-limited 

adsorption and the rate-limited extraction, which has also been excluded as a 

mechanism for the inhibition of U(VI) desorption (Shi et al. 2009). 

 

Figure 3.8.  Kinetic desorption of U(VI) associated sediments from Col-U (□), Col-U-P (◊) 

and Col-U-P-NP (○) by (a) ammonium acetate and then (b) acetic acid for 16 hours. Error 

bars represent standard errors from triplicate experiments. Lines are the output of the 

simulations for interpreting the process using equation S2. 

 
Table 3.4. Kinetic extraction of U(VI) included a rapid process (regarded as instantaneous 
release) followed by a slow release.  

    A (µg/g) k (hr-1)  
Step 2 
(Ammonium 
Acetate) 

Col-U 1.31±0.17 0.65±0.45 
Col-U-P 0.84±0.10 0.44±0.23 
Col-U-P-NP 0.52±0.07 0.68±0.37 

Step 3 
(Acetic Acid) 

Col-U 1.10±0.12 0.59±0.31 
Col-U-P 0.77±0.08 0.57±0.25 
Col-U-P-NP 0.64±0.08 0.43±0.23 

 
 

 

0.00

0.50

1.00

1.50

2.00

2.50

0 5 10 15 20

E
xt

ra
ct

ed
 U

 (u
g/

g)
 

Time (hr) 

a. 

0.00

0.50

1.00

1.50

2.00

2.50

0 5 10 15 20

E
xt

ra
ct

ed
 U

 (u
g/

g)
 

Time (hr) 

b. 



www.manaraa.com

 

 
 

67 

Table 3.5. Extent of Instantaneous release in time-dependent extraction experiments. The 
extent (percentage, %) of instantaneous release U(VI) was calculated as C(t=0)/C(t), where 
C(t=0) is the initial U(VI) concentration in solution. 

Time 
Step 2 Step 3 
Col-U Col-U-P Col-U-P-NP Col-U Col-U-P Col-U-P-NP 

6 s 100 100 100 100 100 100 
19 s 99 100 99 99 99 100 
1 min 98 99 97 98 98 99 
3 min 10 s 95 96 92 94 95 97 
10 min 85 88 80 84 86 90 
30 min 68 72 59 65 69 77 
1 h 55 59 46 52 56 65 
1 h 40 min 48 49 38 43 47 55 
5 h 16 min 39 36 30 33 36 42 
16 h 37 33 30 32 35 39 

 
 

3.4 Conclusions 

This chapter has described the application of modeling approaches to batch 

adsorption experiments, kinetic adsorption and column behavior under different flow 

rates. The kinetic adsorption revealed an intra-particle diffusion process controlling 

the adsorption of U(VI) by sediments. The surface complexation modeling could 

successfully being applied to describe the U(VI) adsorption by sediments with no 

phosphate. An additional four columns have been described here that indicated the 

impact of flow rate and the behavior could be simulated by a simplified one-

dimensional reactive transport model, although a small discrepancy existed between 

the experiment data and the modeling results. In Appendix B, a surface complexation 

model was developed for enhanced U(VI) adsorption with the addition of phosphate. 

As being indicated in many previous studies, the U(VI) uptake in a column would be 

largely affected by the water chemistry, an advanced reactive transport model was 
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being developed to include the impact of the advective flow, surface complexation 

reactions, kinetically controlled mineral dissolution processes.  
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Chapter 4. Measurement and Surface 

Complexation Modeling of U(VI) 

Adsorption to Engineered Iron Oxide 

Nanoparticles 

Results of this Chapter have been submitted to Environmental Science & Technology 

and the manuscript is currently under review. 

 

Graphic Abstract 
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Abstract 

Surface-functionalized magnetite nanoparticles have high capacity for U(VI) 

adsorption and can be easily separated from the aqueous phase by applying a 

magnetic field.  A surface-engineered bilayer structure enables the stabilization of 

nanoparticles in aqueous solution.  Functional groups in stearic acid (SA), oleic acid 

(OA) and octadecylphosphonic acid (ODP) coatings led to different adsorption 

extents (SA≈ OA > ODP) under the same conditions.  The adsorption of U(VI) to 

OA-coated nanoparticles was examined as a function of initial loading of U(VI) (5-

15 μM), pH (4.5 to 10), and the presence or absence of carbonate.  A surface 

complexation model was developed to interpret the adsorption behavior.  With a 

small set of adsorption reactions for uranyl hydroxide and uranyl carbonate 

complexes to surface sites, the model can successfully simulate the entire adsorption 

dataset over all uranium loadings, pH values, and dissolved inorganic carbon 

concentrations.  The results show that the adsorption behavior was related to the 

changing U(VI) species and properties of surface coatings on nanoparticles. The 

model could also predict pH-dependent surface potential values that are consistent 

with measured zeta potentials.    
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4.1 Introduction 
Uranium contamination of the environment has resulted from activities associated 

with past weapons production and mining processes as well as natural processes (Pan 

et al. 2016b).  The U.S. drinking water standard for uranium is 30 ug/L.  Uranium 

mainly exists in oxidation states of U(IV) and U(VI), and U(IV) is a less soluble 

form and is only  found in relatively reducing environments.  U(VI) can exist as the 

uranyl ion (UO2
2+) and different aqueous complexes of uranyl with hydroxide and 

carbonate, and the exact speciation can affect the ability to remove U(VI) from water.   

Iron oxide-based materials are attractive sorbents for the removal of heavy 

metals from water due to their high surface area and reactivity (Wang et al. 2012, Xu 

et al. 2012, Zeng et al. 2008).  Adsorption of metal contaminants (e.g., U, Cr, As) by 

nanoscale iron oxides have been extensively studied.  Research has examined the 

impact of particle size and of water chemistry parameters such as pH, ionic strength 

and carbonate concentrations on U(VI) adsorption behavior (Singer et al. 2012a, 

Wang et al. 2011a, Zeng et al. 2009).  Solution pH affects the surface charge of 

many sorbents and the speciation of U(VI) complexes, thus affecting the adsorption 

affinity.  The presence of carbonate results in U(VI)-carbonate complexes being the 

dominant species at neutral pH and above, and these generally have lower adsorption 

affinity to adsorbents (Pan et al. 2016b, Wang et al. 2012, Wazne et al. 2003).  

Although a number of iron oxide materials have been demonstrated as effective 

adsorbents, aggregation of bare iron oxide nanoparticles can limit their application in 

real water treatment systems. 
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The surface of iron oxide nanoparticles can be modified to be coated with a 

diverse range of materials, including humic acid, polymers and fatty acids (Bruce 

and Sen 2005, Ge et al. 2015, Jiang et al. 2014, Li et al. 2016a) that can prevent 

aggregation (Jiang et al. 2014, Li et al. 2016a). Superparamagnetic engineered 

nanoparticles have high potential for water treatment due to the ease of separation 

from the aqueous phase by applying a relatively low magnetic field (Li et al. 2016c, 

Yavuz et al. 2006).  Humic acid-covered magnetite particles effectively removed the 

metal contaminants Hg(II), Pb(II), Cd(II) and Cu(II) from tap water and natural 

waters at pH from 2 to 9 (Liu et al. 2008).  Functional groups of humic acid were 

also reported to be responsible for the reduction of Cr(VI) to non-toxic Cr(III) (Jiang 

et al. 2014).  Chitosan (polysaccharide)-bound magnetic nanoparticles were prepared 

for removal of Cu(II) ions (Chang and Chen 2005).  Manganese ferrite/magnetite 

nanoparticles coated with fatty acids have been applied for U(VI) sorption (Li et al. 

2016c, Zhang 2003).  However, the impact of water chemistry on the adsorption of 

U(VI) to magnetite coated with fatty acids has not been thoroughly investigated in 

terms of pH, U(VI) loadings and the presence or absence of dissolved inorganic 

carbon.   

Surface complexation modeling (SCM) is a quantitative tool for predicting 

metal adsorption in a reaction-based framework that accounts for the full aqueous 

speciation, surface chemical reactions, and the impacts of surface potential on the 

adsorption of charged species (Payne et al. 2013, Wang et al. 2012, Xie et al. 2016).  

SCM accounts for the impact of water chemistry on aqueous and surface speciation 

in predicting adsorption over a broad range of conditions with a set of reactions and 
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corresponding reaction constants (Wang and Giammar 2013).  In most previous 

studies that used SCM to interpret U(VI) adsorption to a material, the adsorption 

sites were the hydroxyl groups at the surface of inorganic solids (e.g., iron oxides, 

aluminum oxides, or clay minerals) (Xu et al. 2006, Zeng et al. 2009).  Some studies 

have included adsorption sites of carboxyl groups, hydroxyl groups, and 

carbonyl/epoxy groups and have simulated U(VI) adsorption onto carbonaceous 

nanofibers (Sun et al. 2016, Zhang et al. 2015).  However, the ability to apply SCM 

to understand the binding of adsorbates to functional groups of organic compounds 

that are coated on the surface of an inorganic solid has not been unexplored.  

Whether or not modeling metal adsorption to such functionalized metal oxide 

sorbents must still consider electrostatic contributions to adsorption in addition to the 

chemical binding to the functional groups remained an open question when we 

designed our experiments. 

In our previous study  we reported on the synthesis and characterization of a 

set of nanoparticles with controlled size and coated with various organic acids (Li et 

al. 2016a).  Due to high monodispersivity, precisely controlled surface chemistry, 

and extensive characterization, these materials were chosen for the present study on 

the effects of water chemistry on the adsorption of U(VI) to surface functionalized 

nanoparticles.  The objectives of the present study were to (1) identify the impact of 

surface coatings on U(VI) adsorption by engineered iron oxide nanoparticles over a 

wide range of pH conditions, (2) investigate the effect of water chemistry on U(VI) 

adsorption to OA-coated nanoparticles, and (3) develop an equilibrium adsorption 

model to simulate U(VI) adsorption over various conditions.   



www.manaraa.com

 

 
 

74 

4.2 Materials and Methods 

4.2.1 Materials   

Iron oxide (Iron III, hydrated, catalyst grade), 1-octadecene (technical grade, 90%), 

oleic acid (OA, 99.0%), steric acid (SA, 99.0%), octadecylphosphonic acid (ODP, 

99.0%), sodium hydroxide (ACS reagent, 99.0%) and nitric acid (trace metal grade) 

were purchased from Sigma-Aldrich.  Reagent grade hexane, acetone, and ethanol 

were also purchased from Sigma-Aldrich and used without purification.  

 

4.2.2 Nanoparticle Synthesis and Phase Transfer   

Iron oxide nanoparticles were prepared according to a published thermal 

decomposition method (Li et al. 2016a, Li et al. 2016b).  The details of the procedure 

are presented elsewhere, and they involved synthesis and purification steps that 

resulted in an iron oxide suspension in hexane (Li et al. 2016a). Iron oxide 

nanoparticles in hexane were characterized by transmission electron microscopy 

(TEM, FEI Tecnai G2 Spirit) by preparing the TEM specimens using carbon support 

film on 300 mesh copper grids. 

The iron oxide nanoparticles in hexane were transferred to ultrapure water by 

forming a bilayer structure through a ligand addition method.  Various amounts of 

organic acids were dissolved in ultrapure water (resistivity > 18.2 MΩ-cm) to obtain 

5 mM oleic acid (OA), 5 mM stearic acid (SA) and 10 mM octadecylphosphonic 

acid (ODP) solutions.  Nanoparticles in hexane (1~2 mL) were added to a glass vial 
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containing 8 mL of aqueous solution with the organic acid.  The mixture was placed 

under a probe sonicator (UP 50H, Dr. Hielscher, GMHB) under 70% amplitude for 5 

min.  After sonication, the residual hexane was evaporated from the suspension over 

24 hours.  The suspensions were purified by three steps of membrane filtration 

(ultrafiltration cellulose membranes, 100 kDa MWCO) and filtration through a 

syringe filter (pore size of 0.2 um, Millipore).  The final products were collected in 

amber glass vials for storage prior to use in experiments. 

 

4.2.3 U(VI) Adsorption 

U(VI) adsorption to nanoparticles coated with three different organic acids was 

studied.  After studying the three types of particles, U(VI) adsorption to OA-coated 

nanoparticles was further investigated to determine the impact of pH, initial U(VI) 

loading and the presence or absence of dissolved inorganic carbon on adsorption.  

For each set of batch experiments, nanoparticle stock suspension was diluted into a 

200-mL beaker with air being bubbled into the suspension for more than 20 minutes.  

A different approach was used for carbonate-free experiments that will be discussed 

later.  U(VI) stock solution was added to the nanoparticle suspension to achieve a 

nanoparticle dose of 28 mg/L as Fe3O4 and one of three target initial U(VI) loadings 

(4.6, 9.4 and 17 μM).  SA- and ODP-coated nanoparticles were only tested with the 

middle U(VI) loading.  The suspension was distributed into 15-mL test tubes and pH 

was adjusted to target values (4 to 10) by addition of 0.1 M NaOH and 0.1 N HNO3 

with air being bubbled continuously to achieve equilibrium exchange with 

atmospheric CO2.  For adsorption experiments with OA-coated nanoparticles at 
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different U(VI) loadings, initial suspensions (12 mL) were prepared in individual test 

tubes with target concentrations of nanoparticles and U(VI).  In order to reach 

carbonate equilibrium conditions at pH higher than 9, aliquots of sodium 

carbonate/sodium bicarbonate solutions were added before adding the U(VI) to 

obtain dissolved inorganic carbon concentrations at the target pH values that were 

already close to equilibrium with atmospheric CO2 before bubbling the  tubes with 

air to achieve full equilibration.  The suspensions were mixed by end-over-end 

rotation for 24 hours and pH was measured and readjusted periodically.  Control 

experiments were conducted through the same steps with either no U(VI) added or 

without nanoparticles.  After 24 hours nanoparticles were separated from the 

suspension by ultracentrifugation at 45,000 rpm for 2 hours.  The supernatants were 

collected and preserved in 1% HNO3 for elemental analysis.  Dissolved U and Fe 

concentrations were analyzed by ICP-MS (PerkinElmer); the absence of Fe in the 

supernatants was an indication that ultracentrifugation effectively separated the 

nanoparticles from the suspension.  Carbonate-free adsorption experiments (OA-

coated nanoparticles) were carried out in a glove box (Coy Laboratory Products Inc., 

MI) in which the gas in the chamber was pumped through a bed of Ca(OH)2 and 

NaOH (Shimadzu soda lime CO2 scrubber) to remove CO2.  For all batch 

experiments, a sample of the initial mixed suspension was digested in hot 

concentrated nitric acid to dissolve the nanoparticles, and the digested solution was 

diluted and then analyzed to determine the exact initial U(VI) and Fe concentrations. 

 

4.2.4 Surface Complexation Modeling (SCM) 
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SCM was performed to quantitatively evaluate the impacts of pH and DIC on U(VI) 

adsorption to surface-functionalized nanoparticles and the relationships between 

U(VI) loadings and the available surface adsorption sites.  The modeling was 

performed for adsorption experiments with OA-coated nanoparticles by using 

MINEQL+ V5.0 with the diffuse double-layer model.  The SCM includes a full set 

of relevant aqueous reactions (Table S1 in the supporting information) in addition to 

surface acid−base and U(VI) adsorption reactions.  

 

4.3 Results and Discussion 

4.3.1 Synthesized Nanoparticles   

As-synthesized nanoparticles have an average size of 8 nm as determined from TEM 

(Figure 4.1a).  Our previous studies confirmed that these materials are magnetite 

based on X-ray powder diffraction (XRD) analysis (Li et al. 2016c). Surface 

passivation was achieved via an organic bi-layer structure with oleic acid as the first 

layer and various organic acids as the second, outer facing, layer (Figure4.1b) (Li et 

al. 2016a, Prakash et al. 2009).  As the solution pH was adjusted from 4.5 to 10.5, all 

suspensions remained stable and monodispersed.   
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Figure 4.1. (a) TEM image for synthesized one layer coated-nanoparticles in hexane 

solution; (b) Bilayer-structure of surface coated nanoparticles with oleic acid as the first 

layer and different organic acids as the second layer. 

 

4.3.2 Equilibrium Adsorption Experiments   

4.3.2.1 U(VI) adsorption to nanoparticles with three types of surface 

coatings 

The adsorption of U(VI) to OA-, SA- and ODP-coated nanoparticles was 

investigated over the pH range from 4.5 to 10.5 with a U(VI) loading of 9.4 μM.  

From the shapes of the adsorption edges for nanoparticles with each coating, the 

extent of adsorption increased from pH 5 to 6, reaching a maximum within the pH 

range from 6 to 7, and then decreased from pH 8 on (Figure 4.2).  These observations 

follow a general trend of U(VI) adsorption for many sorbent systems (Waite et al. 

1994). For example, the adsorption edge of U(VI) to manganese oxides has 

increasing adsorption starting at pH 2, a maximum from pH 4 to 8, and a decrease 

above pH 8 when carbonate is present (Wang et al. 2012).  U(VI) adsorption 

loadings did not reach more than 90%, indicating that there might be limited 

a b 
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adsorption sites or that the affinity of the functional groups on the nanoparticles 

results in dissolved U(VI) persisting even with excess binding sites.  OA- and SA-

coated nanoparticles have similar extents of adsorption, with the highest adsorption 

densities of 103 and 97 ug/g when equilibrated in suspensions with a total U(VI) 

concentration of 9.4 µM at pH of 6 to 7.  These are both higher than the adsorption 

densities on ODP-coated nanoparticles (82 ug/g) at the same conditions.  The double 

bond in the OA structure versus the structure of SA with only single bonds did not 

affect adsorption.    

 

 
Figure 4.2. Percentage of total U(VI) that is adsorbed to stearic acid-, oleic acid- and 

octadecylphosphonic acid-coated iron oxide nanoparticles (28 mg/L as Fe3O4) in suspensions 

that are open to the atmosphere. The initial U(VI) loading was 9.4 µM. Ionic strength was 

0.01 M.  
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Low adsorption at high pH (>9) was probably from the formation of U(VI)-

carbonate complexes that stabilize U(VI) in water (Hsi and Langmuir 1985, Wazne 

et al. 2003).  For all surface coatings evaluated, zeta potential values decreased with 

increasing pH as the surface became relatively more negatively charged, (Li et al. 

2016a) which also further inhibited the adsorption of negative uranyl-carbonate 

species.  High U(VI)  adsorption capacity has been observed to SA-, OA-, ODP- and 

oleyl phosphate- (OP, unsaturated carbon chain) coated manganese oxide 

nanoparticles, due to binding of U(VI) to the phosphonate group (PO(OH)2) and 

carboxyl group (COOH) (Lee et al. 2015a).  Manganese oxide nanoparticles coated 

with OP and ODP had higher adsorption capacity than nanoparticles coated with SA 

and OA on the basis of qmax values when studied at much higher total U(VI) loadings 

than examined in the present study.  This difference in adsorption capacity might 

result from stronger complexation of U(VI) by phosphate functional groups than by 

carboxyl groups (Lee et al. 2015a, Lee et al. 2015b).  For our study, which was 

conducted at relatively low total U(VI) loadings, the adsorption densities are likely 

below the maximum capacity of the nanoparticles and differences in maximum 

capacities among different materials thus cannot be distinguished.   

 

4.3.2.2 U(VI) adsorption to OA-nanoparticles and the impact of 

carbonate  

The U(VI) adsorption to OA-, SA- and ODP-coated nanoparticles shown in Figure 

4.2 was for conditions that did not reach complete air-water equilibrium, especially 
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at the highest pH values studied, as bubbling air could not bring the pH to target 

values.  Consequently, the data shown in Figure 4.2 are defined as being partially air-

water equilibrated.  For the more in-depth study of U(VI) adsorption to OA-coated 

nanoparticles, fully carbonate-equilibrated experiments were performed with the 

addition of NaHCO3/Na2CO3 (Figure 4.3).  For OA-coated nanoparticles equilibrated 

with the atmosphere, the adsorption percentage decreased with increasing initial U 

loadings, yet it still did not approach 100% adsorption at the lowest initial U(VI) 

loadings (Figure 3).   

 
Figure 4.3. Percentage of U(VI) adsorbed to OA-coated iron oxide nanoparticles (28 mg/L 

as Fe3O4). Points are experiment data and lines are predicted results. ◊, ─: 17 μM total U(VI) 

open to the atmosphere; □,- - : 9.4 μM total U(VI) open to the atmosphere; Δ, ─ · ─: 4.6 

μM total U(VI) open to the atmosphere; ○, ─ ─: 9.4 μM total U(VI) in CO2-free system. 

Ionic strength was 0.01 M.  Lines are the predicted values from surface complexation 

modeling. 
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Carbonate significantly impacted U(VI) adsorption for the high pH conditions.  For 

the same U(VI) loading (9.4 μM), the increase of dissolved inorganic carbon lowered 

the adsorption percentages.  In carbonate free systems, more than 95% of U(VI) 

adsorbed at pH 9 (Figure 4.3, CO2 free), but 70% adsorbed for the partially 

equilibrated system (Figure 4.2, OA) and only 40-50% for the fully equilibrated 

condition (Figure 4.3, 9.4 μM).  A direct comparison of three adsorption edges at 

these different air equilibration conditions is included in the SI.  The inhibition of 

adsorption by dissolved inorganic carbon was due primarily to the complexation of 

U(VI) by carbonate in solution that decreases the concentration of available UO2
2+ in 

solution.   

Many previous studies have revealed that U(VI) has strong interactions with 

organic functional groups (Kazy et al. 2009, Lee et al. 2015a, Wang et al. 2006, Zeng 

et al. 2016).  FTIR spectra before and after U(VI) adsorption to bacterial biomass, to 

OA and ODP-coated manganese oxide all had changes in the COO- and PO2
- 

vibrations due to the attachment of U(VI) to those functional groups on the surface 

of the adsorbents (Kazy et al. 2009, Lee et al. 2015a).  The adsorption of U(VI) to 

gram-positive soil bacteria has also been modeled with UO2
2+ forming surface 

complexes with carboxyl and phosphate functional groups on the bacterial cell wall 

(Fowle et al. 2000).  While it is theoretically possible that U(VI) was chemically 

reduced by the magnetite surface (Singer et al. 2012a, b), this is probably not the 

case for our experiments with surface-coated magnetite nanoparticles.  Previous 

studies with OA-coated magnetite and oleyl phosphate coated manganese oxide 

nanoparticles only observed U(VI) reduction at high U(VI) loadings (400 μM U(VI) 
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for OA-coated magnetite) (Lee et al. 2015a, Li et al. 2016c).  At the lower loadings 

of this study, U(VI) probably cannot diffuse through the two-layer OA-covered 

surface to be adsorbed on or reduced by the surface of the magnetite.  Based on these 

observations, adsorption to surface functional groups was considered to be the 

dominant mechanism to account for U(VI) uptake in this modeling frame work. 

 

4.3.3 Surface complexation modeling 

4.3.3.1 Properties of nanocomposite surface and its corresponding 

modeling 

In order to simulate the adsorption edges under different conditions, a SCM was 

established to first simulate the surface properties of nanoparticles (surface acid-base 

equilibrium constants and site density).  Titration of nanoparticle suspensions was 

carried out in a glove box with CO2 being scrubbed by a commercial CO2 absorber.  

While the pKa of the carboxylic group in aqueous solution is around 4.8, titration 

curves revealed that the nanoparticle suspensions provided effective buffering from 

pH 6 to 8 (Figure 4.4), which is consistent with the reported apparent pKa values 

(between 6 and 8) in a previous study (Salentinig et al. 2010).  There is a distinction 

between an intrinsic constant and an apparent constant for surface reactions that is 

accounted for in the double layer model, which considers the chemical energetics of 

the reaction as well as the energetics of ions approaching or leaving a charged 

surface.  When the double-layer model is implemented for minerals (such as goethite 
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and ferrihydrite), an amphoteric surface hydroxyl is used to represent the surface site 

as ≡SOH with the possibility of forming both ≡SOH2+ and  

 
Figure 4.4. Titration curves for nanoparticle suspensions (adjusted to low pH at the 

beginning). Points are shown for two duplicate titrations and the dashed line is the predicted 

titration curves obtained from applying the surface complexation model to the conditions of 

a suspension with 21 mg/L of nanoparticles as Fe3O4. 

 

≡SO- species.  In contrast, the OA-coated nanoparticles used in this study can only 

be neutral or deprotonated; consequently, we chose to use HCSITE to represent the 

neutral form of exposed functional groups at the nanomaterial surface and CSITE- 

for the negative deprotonated form.  For inclusion in the SCM approach, the solid 

concentration was represented as the Fe3O4 in the nanoparticles.  Surface site 

concentrations were calculated from surface area and site density, while both of these 

values along with the pKa of HCSITE were determined by optimizing the fit of the 

model outputs to the experimentally determined titration curves (Figure 4.4).  The 

best fit was determined as the one with the minimum sum of the squares of the 

3

4

5

6

7

8

9

10

11

0.00 0.02 0.04 0.06 0.08 0.10

pH
 

NaOH (mM) 



www.manaraa.com

 

 
 

85 

residuals between experimental and predicted data.  The best fit value of pKa for 

HCSITE was 5.2 (Reaction 1, Table 4.1).  The calculated maximum oleic acid 

exposed functional group concentrations for 28 mg/L nanoparticles (as Fe3O4, used 

for adsorption experiments) was 78 μM from Li’s calculated density of 1.32 mol of 

outer layer/mol Fe3O4, based on the assumption that the first layer and the second 

layer interacted with a 1:1 ratio (Li et al. 2016a).  The surface site concentration 

obtained from optimizing the surface complexation model was determined on the 

optimized site density value and was 32 μM, which is lower than the calculated 78 

μM for same amount of nanoparticles. This is probably because the ratio of the outer 

layer to the first layer on the nanoparticles was less than one; the exact ratio of the 

two layers remains imprecisely known. 

 
Figure 4.5. Points are the measured zeta potential data from Li. et al (2015)(Li et al. 2016a) 

and the line is the calculated surface potential when using the diffuse double layer model. 

The calculated potential was obtained by determining the equivalent charge density from 

SCM simulation and then applying the Gouy-Chapman equation (SI) to determine the 

surface potential. Parameters in the model are listed in Table 4.1.  
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Modeling parameters for the surface properties were furthered tested by 

comparing the calculated surface potential with the measured zeta potential of OA-

coated nanoparticles.  OA-coated nanoparticles were always negatively charged, and 

they become more negatively charged with increasing pH.  An equivalent surface 

charge density could be obtained from the surface complexation model, which can 

then give the electrical potential in the diffuse plane (ψd) based on the Gouy-

Chapman theory (see additional discussion in the Supporting Information).  The 

trend with pH and the values of the calculated potentials were remarkably consistent 

with the zeta potentials that were measured for OA-coated nanoparticles over the pH 

range from 4 to 12 in a previous study (Figure 4.5) (Li et al. 2016a). 

 

4.3.3.2 Surface complexation modeling for U(VI) adsorptions 

Based on the estimated nanoparticle surface properties, the SCM can successfully 

simulate the adsorption edge data for U(VI) adsorption to OA-coated nanoparticles 

over a wide range of pH and total U(VI) concentrations under open or closed 

atmospheric conditions (Figure 4.3).  The model development started with HCSITE 

concentration and the associated deprotonation constant determined from the acid-

based titrations (Reaction 1).  The next step was addition of reactions and 

optimization of their constants to fit the adsorption edge for data from experiments 

with no carbonate in the system.  Three different surface complexation reactions 

(Reactions 2-4) were considered in this step.  The model showed that combinations 

of either Reactions 2 and 4, Reactions 3 and 4 or Reactions 2, 3 and 4 could all fit the 
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carbonate-free experimental data well with different sets of log K values.  As a result, 

initial estimates of log K values were obtained.   

 

Table 4.1. Adsorption reactions with surface sites (HCSITE) (other aqueous reactions are 
included in the supporting information) and parameters in the surface complexation 
modeling were obtained from the optimal fitting result. 

Reactions and Parameters  

Specific surface area:  180 m2/g  

Site density:                3.82 sites/nm2  

𝐻𝐶𝑆𝐻𝐻𝐻 = 𝐶𝑆𝐻𝐻𝐻 − + 𝐻 + logK1 = -5.20         Reaction 1 

𝑈𝑈22+ + 𝐻2𝑈 − 2𝐻+ + 𝐻𝐶𝑆𝐻𝐻𝐻 = 𝐶𝑆𝐻𝐻𝐻𝑈𝑈2𝑈𝐻 logK2 = -5.65         Reaction 2 

𝑈𝑈22+ + 2𝐻2𝑈 − 3𝐻+ + 𝐻𝐶𝑆𝐻𝐻𝐻 = 𝐶𝑆𝐻𝐻𝐻𝑈𝑈2𝑈𝐻 2− logK3 = -9.35         Reaction 3 

𝑈𝑈22+ + 3𝐻2𝑈 − 4𝐻+ + 𝐻𝐶𝑆𝐻𝐻𝐻 = 𝐶𝑆𝐻𝐻𝐻𝑈𝑈2𝑈𝐻 32− logK4 = -14.30       Reaction 4 

𝑈𝑈22+ + 2𝐶𝑈32− − 𝐻+ + 𝐻𝐶𝑆𝐻𝐻𝐻 = 𝐶𝑆𝐻𝐻𝐻𝑈𝑈2(𝐶𝑈3 )23− logK5 = 25.60         Reaction 5 

 

 

The optimal set of reaction constants was then obtained by applying reactions 

to model the system that was equilibrated with the atmosphere with three U(VI) 

loadings as well as the carbonate-free system.  The application of the first two 

combinations of reactions (Reactions 2 and 4 or Reactions 3 and 4) led to either 

overestimation or underestimation of adsorption at low or high pH conditions, 

respectively.  Consequently, the implementation of all three reactions together could 

balance this situation but would again predict a decrease of adsorption at pH above 

approximately 8 that was much more dramatic than the actual observed decrease in 

adsorption.  In order to account for more adsorption at higher pH, formation of a 

uranyl-carbonate ternary surface complex was included as Reaction 5; such a ternary 

surface complex has been found to be important to interpreting U(VI) adsorption to 
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other materials as well (Waite et al. 1994, Wang et al. 2012).  When these four 

reactions were considered to fit four adsorption edges (three U(VI) loadings for open 

systems and one loading for a closed system), the optimal values for the reaction 

constants for Reactions 2, 3 4, and 5 were determined.  The resulting optimal set of 

constants gives the minimum value of the sum of the square of the residuals between 

experimental and predicted data (Table 4.1), and the adsorption percentage for each 

of the four surface complexes is shown in Figure S2.2 (Supporting Information).  

With no carbonate in the system, the model predicts increased adsorption from pH 5 

that remains at nearly 100% adsorption, even at higher pH values.  For systems 

equilibrated with the atmosphere,  the model predicts increasing U(VI) adsorption 

from pH 4.5 to 6, an adsorption plateau from pH 6 to 8.5 during which there was a 

slight decrease of adsorption percentage, and finally decreasing adsorption when pH 

was higher than 8.5. 

The SCM was also used to predict the adsorption of U(VI) with increasing 

total U loadings at a fixed pH.  Such an equilibrium relationship between adsorbed 

and dissolved uranium at a fixed pH and with increasing total U loadings is 

commonly interpreted using adsorption isotherm equations (e.g., Langmuir or 

Freundlich), but this behavior can also be predicted using an SCM.  Data for 

comparison of the model predictions come from a recent study (see discussion in the 

Supporting Information) (Li et al. 2017).  The model only agreed well with the data 

at the lowest U(VI) equilibrium concentrations (< 2 mg/L), which was only a small 

part of the total conditions examined in the previous study.  With increasing U(VI) 

loadings, the difference between the experimental and predicted adsorption densities 
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began to increase.  Potential causes for the difference could include U(VI) 

precipitation and U(VI) reduction in the previous study that increase the solid-

associated uranium concentration but are not technically the result of U(VI) 

adsorption.  At the high dissolved U(VI) concentrations in the previous study, the 

solution can become supersaturated with respect to U(VI) precipitates.  In the 

previous experimental study, XANES spectra indicated partial U(VI) reduction to 

U(IV) at higher initial U(VI) loadings (6.1 µmol of U(VI)/mg of Fe3O4) than those in 

the experiments of this study (0.2 – 0.6 µmol of U(VI)/mg of Fe3O4) (Li et al. 2016c). 

As a result, with increasing U(VI) concentration, U(VI) reduction increasingly 

affects the uptake of U(VI) from solution to the nanoparticles.   

 

4.4 Implications for U(VI) Separation using 

Engineered Nanoparticles 

Engineered iron oxide nanoparticles are a promising material platform to separate 

U(VI) from the aqueous phase with easy application of relatively low magnetic fields.  

The modification of nanoparticle surfaces not only enables particle stability, but it 

also allows for enhanced adsorption capacity and affinity towards U(VI) as well as 

many other contaminants.  The studied OA-, SA- and ODP-coated nanoparticles all 

possess high adsorption affinity for U(VI) over a wide pH range.  The surface 

complexation modeling approach that has commonly been applied to interpret U(VI) 

adsorption to minerals can also be used to interpret U(VI) adsorption to engineered 

sorbents.  The model framework developed in this study enables the implementation 
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of a double-layer model with a new type of surface site that corresponds to exposed 

functional groups on the engineered nanoparticles. The model represents the 

properties of surface coated nanoparticles (acid-base behavior and zeta potential) and 

can simulate U(VI) adsorption under various, environmentally relevant aqueous 

conditions.  Predictable adsorption behavior is a key step towards optimized design 

and operation of material-based treatment processes and conditions for U(VI) 

removal.  Both experimental and modeling work provide insight into the adsorption 

process that benefit the application of engineered nanoparticles for metal removal 

from water. 
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Chapter 4. Supporting Information 

Supporting information contains aqueous reactions considered in the surface 

complexation modeling, surface charge density calculation, comparison of U(VI) 

adsorption when closed, partially and completely equilibrated with atmosphere, 

simulation of adsorption isotherm with OA-coated nanoparticles by surface 

complexation modeling and adsorption percentage of each surface associated U(VI) 

species in the surface complexation model in one adsorption edge.  The supporting 

information also includes the results of a set of U(VI) adsorption experiments with 

CTAB-coated magnetite nanoparticles.  

 

Surface charge density calculation and the Gouy-Chapman equation.  

𝜎𝑑 = [𝐶𝐶𝐶𝐶]∙𝑧
𝑆∙𝑆𝑆

                                      Equation S1 

𝜎𝑑 = −0.1174𝐶𝑠0.5𝑠𝑠𝑠ℎ 𝑧𝑧𝜓𝑑
2𝑅𝑅

          Equation S2 

Symbol Meaning 
σd equivalent charge density (C/m2) 
[Coul] coul concentration from the model simulation (mol/L) 
F Faraday constant (C/mol) 
S solid concentration (g/L) 
SA Specific surface area (m2/g) 
Cs electrolyte concentration (mol/L) 

z 
absolute value of the ionic charge number of the electrolyte 
ions 

ψd electrical potential in the d plane (V) 
R gas constant (J/mol-K) 
T temperature (K) 
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Comparison of U(VI) Adsorption among CO2-free Conditions, Partially Air-

equilibrated and Fully Air-equilibrated Systems  

For adsorption experiments in Figure 2 of the main manuscript, adsorption reactors (test 

tubes) were opened and bubbled with air for approximately 20 minutes, and the adsorption 

percentage at high pH conditions were shown as red squares in Figure 2 of the main 

manuscript and Figure S1 below. For high pH conditions, it was hard to reach the target pH 

values by air-bubbling alone.  As a result, in order to make sure the system completely 

reached air-water equilibrium, NaHCO3/Na2CO3 was added as described in the Methods 

section.  In these systems, the results at these more fully equilibrated conditions are those 

presented in Figure 3 of the main manuscript.  Adsorption with same initial loadings of U(VI) 

to OA-coated nanoparticles and different extents of equilibration with atmospheric CO2 are 

compared in Figure S4.1.  The comparison illustrates that with less inorganic carbon in the 

system, more U(VI) adsorption occurred, especially for pH higher than 8.  

 

Figure S4.1. Percentage of U(VI) adsorbed to OA-coated iron oxide nanoparticles (9.4 μM 
total U(VI), 28 mg/L as Fe3O4). ○ in orange: U(VI) in CO2 free system (Figure 3 in the 
manuscript); □ in red: open to the atmosphere (Figure 2 in the manuscript); □ in blue: open 
to the atmosphere (Figure 3 in the manuscript). 
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Comparison of Surface Complexation Model Results to U(VI) Adsorption Isotherm for 

8 nm Oleic Acid-coated Nanoparticles 

 

Figure S4.2. Relationship between equilibrium adsorbed and dissolved U(VI) at pH 7. ◊: 
experimental data from previous study to 8 nm oleic acid-coated nanoparticles;(Li et al. 
2017)   ─: output of surface complexation model developed in this study.  The model was 
developed by examining the pH dependence of U(VI) adsorption at relatively low total U(VI) 
loadings relative to the experimental data presented here.  
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Figure S4.3.  Modeled speciation of surface complexes using the surface complexation 

model for mid-U(VI) loadings for the system equilibrated with the atmosphere.  Dashed 

lines represent percentages of U(VI) present in individual surface complexes.  ─· (orange): 

CSITEUO2OH, ─ ─ (green): CSITEUO2OH2
-, ─ · ─ (red): CSITEUO2OH3

2-, ─ ─ (purple): 

CSITEUO2(CO3)2
3-. The solid line is the summation of the four individual surface complexes 

and represents the total U(VI) that is adsorbed.  
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U(VI) Adsorption to CTAB-coated Magnetite Nanoparticles.  

Trimethyloctadecylammonium bromide (CTAB) coated magnetite nanoparticles have a 

surface that is positively charged.  Adsorption affinity to either positively charged or 

negatively charged nanoparticles depends on the dominant aqueous U(VI) species over 

certain pH range.  Adsorption percentages of U(VI) adsorption to CTAB-coated 

nanoparticles were surprisingly identical to that have been observed for OA-coated 

nanoparticles.  Less adsorption was observed at lower pH range (pH 5~6) because the uranyl 

hydroxide species are the dominant forms and would have more adsorption on negatively 

charged OA-coated nanoparticles.  Due to the observed aggregation at pH higher than 7.0, 

adsorption experiments for CTAB-coated nanoparticles were only performed at low pH 

conditions (5.0 to 7.0). 

  

Figure S4.4. Percentage of U(VI) adsorbed to CTAB- and OA-coated iron oxide 
nanoparticles (9.4 μM total U(VI), 28 mg/L as Fe3O4). 
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Chapter 5. Cr(VI) Adsorption to 

Engineered Iron Oxide Nanoparticles: 

Impact of Water Chemistry and 

Surface Complexation Modeling 

Results of this Chapter are in preparation for submission to Environmental Science: Nano. 

 

Abstract 

Surface-functionalized magnetite nanoparticles are promising adsorbents due to the 

large surface area and the ease of separation after contamination removal.  Amine-

functionalized nanoparticles (trimethyloctadecylammonium bromide, CTAB) 

possess higher Cr(VI) adsorption affinity than nanoparticles with carboxyl groups 

(Stearic acid, SA), due to the strong electrostatic interactions between opposite 

charges.   The adsorption of Cr(VI) by CTAB- and SA-coated nanoparticles 

decreased with increasing pH values (4.5 to 10).  For CTAB-coated nanoparticles, an 

increase of initial Cr(VI) loadings led to lower adsorption percentages.  A surface 

complexation model could successfully simulate Cr(VI) adsorption in NaNO3 

solutions over a broad range of pH and Cr(VI) loadings with a small set of 
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adsorption reactions.  The application of nanoparticles was tested with the presence 

of two drinking water supplies, and decreases in Cr(VI) adsorption were associated 

with the presence of Ca2+.  When the Ca2+ concentration increased from 0 to 3.3 mM, 

adsorption decreased.  Because only slight aggregation was associated with Ca2+ and 

an observed increase in zeta potential with Ca2+ addition should actually enhance 

Cr(VI) adsorption, the causes of inhibition of Cr(VI) by Ca2+ are not associated with 

particle size or surface charge.  Instead it is likely that Ca2+ influences the structure 

of the organic bilayer on the nanoparticle surfaces in a way that decreased the 

availability of surface sites.  
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5.1 Introduction 
The presence of chromium(VI) in the environment is a serious public health concern 

(Langrrd 1990, Peterson-Roth et al. 2005).  In the two oxidation states of chromium, 

Cr(VI) is soluble and has toxic and carcinogenic effects while Cr(III) is less toxic 

and less soluble.  The current U.S. drinking water standard for total chromium is 100 

µg/L (U.S. 1985).  However, California has a new regulation specifically for Cr(VI) 

with a maximum contaminant level (MCL) of 10 μg/L (2016).  Cr(VI) removal from 

aqueous phases has been studied through many chemical and physical treatment 

processes and the removal efficiency can be largely affected by the pH-dependence 

of chromium speciation (Olazabal et al. 1997, Pan et al. 2016a, Zachara et al. 1987). 

Iron oxide-based materials have received high attention for the removal of 

heavy metals from aqueous phase due to their high surface area and reactivity 

(Johnston and Chrysochoou 2012, Zachara et al. 1987, Zeng et al. 2008).   Nanoscale 

iron oxides have been applied to investigate the adsorption of many types of heavy 

metals (Xu et al. 2012, Zeng et al. 2009).  Although high adsorption capacities have 

been reported, the aggregation of these bare nanoparticles remains as an issue that 

disturbs the stability of nanoparticles in aqueous phases and reduces their effective 

surface area and reactivity (Wang et al. 2013).  Iron-oxide nanoparticles surfaces can 

be modified with a variety of materials (humic acid, polymers and fatty acids) (Ge et 

al. 2015, Jiang et al. 2014) that can stabilize nanoparticles while maintaining the 

ability to remove metal contaminants (U(VI), Cu(VI) and Cr(VI)) (Hao et al. 2010, 

Lee et al. 2015a, Li et al. 2016a, Wang et al. 2015).  U(VI) removal has been widely 

studied by fatty acids coated magnetite nanoparticles from a same synthesis process.  
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Humic-acid coated magnetite can adsorb Cr(VI), and the humic acid was also 

responsible for Cr(VI) reduction to Cr(III) (Jiang et al. 2014).  Bare magnetite has 

been studied for Cr(VI) removal and significant of Cr(VI) reduction was observed.  

However, the extent to which this reduction will occur for surface-modified 

nanoparticles has not been explored.  The application of superparamagnetic 

engineered nanoparticles enables the separation by magnetic field after adsorbing 

metals (Singh et al. 2011, Yavuz et al. 2006).  NH2-functionalized nanomagnetic 

polymer adsorbents (NH2-NMPs) have been studied for Cr(VI) removal that had 

adsorption mechanisms as electrostatic attraction, ion exchange and coordination 

interactions (Zhao et al. 2010). 

Cr(VI) adsorption to engineered magnetite nanoparticles coated with organic 

acids have not previously been evaluated with respect to systematic variation in the 

water chemistry.  Such an evaluation can consider the impact of water chemistry on 

particle stability and surface properties, and it can be integrated with an equilibrium 

adsorption modeling approach.  For metal adsorption to inorganic solids, surface 

complexation modeling (SCM) has successfully simulated adsorption by considering 

the relevant interfacial interactions, including a set of aqueous and surface reactions 

and the consideration of electrostatic interactions between solutes and surfaces, to 

predict adsorption over a broad range of conditions.  Many SCMs have been 

developed to simulate metal adsorption to various adsorbents.  Cr(VI) adsorption to 

MnFe2O4 has been modeled by introducing ≡MeOH2
+ as the hydroxylated surface 

site for pH from 2 to 6.5, as the surface site only remained positively charged below 

the pHpzc (Hu et al. 2005).  In other adsorption systems such as carbonaceous 
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nanofibers and multiwalled carbon nanotubes, carboxyl and hydroxyl groups were 

considered as the dominant two adsorption sites towards U(VI) and Cr(VI) (Hu et al. 

2009, Zhang et al. 2015). 

While developing novel materials for metal removal, the stability and 

treatment efficiency of the material needs to be tested in real water systems.  Of 

particular concern is the potential for nanoparticle suspensions to become 

destabilized and for nanoparticles to aggregate such that their effective surface area 

is greatly reduced.  Aggregation of oleic acid-coated nanoparticles by Na+ and Ca2+ 

has been reported with critical coagulation concentrations at 710 mM and 10.6 mM 

at pH 7.2, (Li et al. 2014) which are high concentrations relative to those that will be 

encountered in drinking water treatment.  Ca2+ has a bridging effect that can bind 

two adjacent carboxyl groups, which affect nanoparticle behavior (Chowdhury et al. 

2014, Li et al. 2014).  In a previous study with a natural water with dissolved Ca2+ 

and Mg2+, these solutes did not influence Cu2+ removal by MNP-NH2 (Hao et al. 

2010).  However, the impact of cations/anions on Cr(VI) adsorption to CTAB-coated 

nanoparticles remains unknown as Cr(VI) is present as anionic forms that may 

respond differently. 

Nanoparticles coated with various organic acids have been synthesized 

through ligand addition methods with controlled size. In this study, SA and CTAB-

coated nanoparticles were chosen to investigate the impact of water chemistry on 

Cr(VI) from the aqueous phase.  The objectives of the present study were to (1) 

identify the impact of water chemistry on Cr(VI) adsorption to nanoparticles coated 

with two types of surface organic acids, (2) develop a reaction-based model that 
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could interpret the observed effects of water chemistry, and (3) evaluate nanoparticle 

adsorption performance with two more complex and realistic drinking water sources. 

 

5.2 Experimental 

5.2.1 Materials  

Iron oxide (Iron III, hydrated, catalyst grade), 1-octadecene (technical grade, 90%), 

oleic acid (OA, 99.0%), stearic acid (SA, 99.0%), trimethyloctadecylammonium 

bromide (CTAB, 99.0%), sodium hydroxide (ACS reagent, 99.0%) and nitric acid 

(trace metal grade) were purchased from Sigma-Aldrich.  Synthetic groundwater 

with a target pH of 7.50 was prepared according to a previous study to represent the 

composition of in Glendale, California, where researches have evaluated other Cr(VI) 

removal technologies (SI) (Pan et al. 2016a).  Reagent grade hexane, acetone, and 

ethanol were also purchased from Sigma-Aldrich and used without purification.  

 

5.2.2 Nanoparticle Synthesis and Phase Transfer 

We used a thermal decomposition method to synthesize iron oxide nanoparticles and 

purify nanoparticle suspensions to obtain the stock suspensions of nanoparticles in 

hexane (Li et al. 2016a).  After the thermal decomposition process, the carboxylic 

functional group of oleic acid reacted onto the surface of the magnetite nanoparticles, 

exposing the hydrophobic tail that enables nanoparticles to be dispersed in hexane.  

These iron oxide nanoparticles are monodispersed with an average size of 8 nm 
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according to imaging by transmission electron microscopy (TEM, FEI Tecnai G2 

Spirit).  

Nanoparticles in hexane solution needs to be phase transferred into the 

aqueous phase by attaching a second layer of desired functional groups for assessing 

Cr(VI) adsorption and the phase transfer procedure was described in previous studies 

(Li et al. 2016a, Li et al. 2016b).  The addition of a second layer of organic acids led 

to surface passivation, with the hydrophilic tail of the second layer exposed to the 

water, which allows the nanoparticles to be transferred from hexane to water.  Stearic 

acid (SA) and trimethyloctadecylammonium bromide (CTAB) were used as the 

second layer organic acids.  Nanoparticles in hexane (1~2 mL) were mixed with 8 

mL of SA (5 mM) or CTAB (10 mM) solutions in ultrapure water (resistivity > 18.2 

MΩ-cm).  The probe of a sonicator (UP 50H, Dr. Hielscher, GMHB) was placed 

between the two phases, and the mixture was sonicated under 70-75% amplitude for 

5 min to introduce nanoparticles from hexane to the water. As a result, the surface of 

bi-layer nanoparticles were either negatively charged or positively charged, due to 

the different surface functional groups exposing outwards. Suspensions with 

transformed nanoparticles were washed by ultrapure water through ultrafiltration 

cellulose membranes (100 kDa MWCO) five times and filtered through a syringe 

filter (pore size of 0.2 µm, Millipore) to obtain the stock suspensions of 

nanoparticles for use in adsorption experiments.  

 

5.2.3 Cr(VI) Adsorption Experiments 
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Batch experiments of Cr(VI) adsorption to surface functionalized nanoparticles were 

studied with various water chemistry.  A Cr(VI) stock solution of 500 mg/L (9.62 

mM) were prepared by dissolving 0.142 g of potassium dichromate (K2Cr2O7) solids 

in 100 mL ultrapure water.  Nanoparticle stock suspensions and Cr(VI) stock 

solution were added into a 200-mL beaker to achieve a nanoparticle dose of 28 mg/L 

as Fe3O4 and target initial Cr(VI) loadings (5.8, 10.5 and 16.5 μM).  The suspensions 

were bubbled by air for 5 min to equilibrate them with air before being distributed 

into separate reactors to be adjusted to target pH values by 0.1 M NaOH and 0.1 N 

HNO3.  The ionic strength was controlled to be close to 0.01 M.  Application of 

CTAB-coated nanoparticles was also tested in St. Louis tap water with pH adjusted 

to 6 and 9 and Glendale groundwater at pH 7.5 with 10.5 μM Cr(VI).  In order to 

study the impact of Ca2+ on Cr(VI) adsorption, mixture suspensions were prepared in 

3.3 mM Ca(NO3)2 solutions from pH 4.5 to 9.  The impact of Ca2+ was also 

investigated by increasing Ca2+ concentration from 0.03 mM to 3.3 mM at pH ~7.50.  

All suspensions were mixed by end-over-end rotation for 24 hours, and the pH was 

periodically monitored and readjusted to be close to target values.  After this 24-

equilibration period, nanoparticles were separated from the suspension by 

ultracentrifugation at 45,000 rpm for 2 hours.  The supernatants were collected and 

preserved in 1% HNO3 for elemental analysis.  Adsorption kinetics were examined 

with duplicate suspensions at an initial Cr(VI) concentration of 10.5 µM with 28 

mg/L of nanoparticles as Fe3O4.  Aliquots (8 mL) of the suspension were taken after 

0.5, 2.5, 4.5, 8 and 24 hours and then immediately separated by ultracentrifugation 

for chemical analysis.  
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5.2.4 Nanoparticle characterization and dissolved Cr(VI) 

measurement 

Hydrodynamic diameters of CTAB-coated nanoparticles with the addition of various 

Ca2+ concentrations at pH 7.5 and surface charges of CTAB-coated nanoparticles 

from pH 5 to 10 were measured by dynamic light scattering (Zetasizer, Malvern 

Nano ZS, UK) of duplicate samples.  For hydrodynamic diameter measurement, a 

certain amount of nanoparticle stock suspension was added into ultrapure water in a 

test tube and the pH was adjusted to 7.5 ± 0.2.  Then 1 mL suspension was 

transferred into a vial, followed by addition of small amounts of concentrated 

Ca(NO3)2 solution.  These additions created a suspension with 1 mg/L (as Fe3O4) of 

nanoparticles and Ca2+ concentrations at target levels that correspond the values in 

adsorption experiments.  For zeta potential measurement, nanoparticle suspensions 

were prepared with the pH being adjusted and immediately placed in the DLS 

measurement chamber after a short time of vortex-mixing. 

Dissolved Cr and Fe concentrations in supernatants were analyzed by ICP-

MS (PerkinElmer).  A control experiment in a previous study indicated that 

ultracentrifugation effectively separated the nanoparticles from the suspension and 

no Fe was detected in supernatants.  Duplicate samples (200 µL) of the initial 

suspension (nanoparticles and Cr mixture) in adsorption experiments were digested 

in hot concentrated nitric acid, and the resulting Cr(VI) concentration and 
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nanoparticle loadings (Fe) were in excellent agreement with the expected initial 

loadings. 

 

5.2.5 Surface Complexation Modeling (SCM) 

SCM was applied to simulate Cr(VI) adsorption to CTAB-coated nanoparticles over 

a wide range of pH and with three different initial Cr(VI) loadings.  The modeling 

was developed in MINEQL+ V5.0 with a diffuse double-layer model being 

implemented.  All aqueous reactions were considered as shown in the supporting 

information. 

 

5.3 Results and Discussion 

5.3.1 Batch Adsorption Experiments 

Cr(VI) adsorption to SA- and CTAB-coated nanoparticles demonstrated different 

features over wide pH conditions.  Over all pH conditions, Cr(VI) adsorption more to 

CTAB-coated nanoparticles than to SA-coated nanoparticles (Figure 5.1), which is 

consistent with expectations based on surface charges.  The CTAB-coated 

nanoparticles are positively charged due to the amine functional groups (Figure 5.3) 

and SA-coated nanoparticles were negatively charged because of carboxylic groups.  

As Cr(VI) exists as the anions HCrO4
- and CrO4

2- over the studied pH conditions, its 

adsorption was more favorable to CTAB-coated nanoparticles.  For a given initial 

Cr(VI) loading, the extent of Cr(VI) adsorption to CTAB-coated nanoparticles 
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decreased with increasing pH.  This trend is because the surface of CTAB-coated 

nanoparticles became less positively charged with increasing pH, leading to less 

adsorption affinity towards Cr(VI) species (Figure 5.3).  Measured zeta potential 

decreased with increasing pH, which were consistent with a trend and in the same 

range of values as in a previous study (Li et al. 2016a).  For SA-coated nanoparticles, 

there was also a trend of decreasing adsorption with increasing pH.  It has been 

observed that Cr(VI) adsorption to MnFe2O4 decreased from pH 2 to pH 10 due to a 

more negatively-charged surface with increasing pH as the deprotonation of surface 

hydroxyl groups (Hu et al. 2005).  Cr(VI) adsorption to surface functionalized 

nanoparticles (TEPA and NH2 as the surface coatings) also showed decreased 

adsorption affinity when pH increased (Zhao et al. 2010).  With increasing initial 

Cr(VI) loading, the percent of Cr(VI) adsorbed at equilibrium for a given pH 

decreased.  The decrease was larger when pH was higher than 7. 

 

Figure 5.1. Percentage of Cr(VI) adsorbed to SA- (Δ) and CTAB- (○) coated NPs (28 mg/L 

as Fe3O4) with Cr(VI) initial loadings of  10.5 µM after 24 hours of equilibration in 0.01 M 

NaNO3 solution.   
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Figure 5.2. Percentage of Cr(VI) adsorbed to CTAB-coated NPs (28 mg/L as Fe3O4) with 

Cr(VI) initial loadings of 5.8 (◊), 10.5 (○) and 16.5 (Δ) µM in 0.01 M NaNO3 solution after 

24 hours.  Points are the experiment results and smooth lines are the simulation results from 

SCM. 

 

Adsorption was considered as the main mechanism for Cr(VI) uptake by fatty 

acids coated magnetite nanoparticles. The interaction between Cr(VI) and 

nanoparticles was mainly considered as chemical binding as amino and carboxyl 

groups have been reported to chelate with heavy metals (Singh et al. 2011, Zhang et 

al. 2012). Cr(VI) has been studied to be adsorbed by humic-acid coated nanoparticles.  

The reduction of Cr(VI) to Cr(III) occurred by the humic acid, and Cr(VI) could not 

diffuse through the humic acid layer to reach the surface of the magnetite core (Jiang 

et al. 2014).  At low Cr(VI) loadings, most Cr(VI) was adsorbed to surface functional 

groups and would not be able to diffuse through organic layers and be reduced by 

magnetite core.  After adsorption experiments, Cr-contained nanoparticles were dried 

and characterized by XPS (spectra not shown here).  However, due to the noisy 

background signal from organic coatings from the spectra, no reduction was able to 

0%

20%

40%

60%

80%

100%

4 5 6 7 8 9 10

Pe
rc

en
ta

ge
 o

f C
r(

VI
) 

Ad
so

rb
ed

 

pH 



www.manaraa.com

 

 
 

108 

be detected at low Cr loadings.  As a result, reduction was not considered to occur by 

either the surface coatings or the magnetite cores. Adsorption was considered as the 

dominant mechanism to account for Cr(VI) removal. 

 

5.3.2 Surface Complexation Model 

A SCM was developed for Cr(VI) adsorption to CTAB-coated nanoparticles with the 

consideration of water chemistry.  In most SCMs, an amphoteric surface hydroxyl 

(≡SOH) is usually used to represent the surface site for a double-layer model to 

predict interactions between metals and mineral surfaces (such as goethite and 

ferrihydrite).  For the CTAB-coated nanoparticles, the functional group can be either 

positive or neutral but not negative, so the component CTABOH was introduced into 

the model to represent the neutral form of the surface functional groups while 

CTAB+ represents the positively charged surface site.  The development of SCM 

started by simulating surface properties (surface potential) as a function of pH.  The 

pKa values for organic acids with amine groups have been reported to vary from 9.8 

to 10.7, based on the number of hydrogens of ammonia that are replaced by organic 

groups (Bauld 2005) and 24 tertiary amine absorbents have been screened, most of 

which have pKa values from 9 to 10 (Chowdhury et al. 2013).  The pKa of 9.8 was 

used as the protonation constant for Reaction 1 in the model (Table 5.1).  An 

additional two parameters, specific surface area and surface site density, need to be 

obtained for determining the total surface site concentrations.   
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Figure 5.3. Measured zeta potential (points) compared with the calculated surface potential. 

The calculated potential was obtained by calculating the equivalent charge density from 

SCM simulation and using the Gouy-Champ equation to determine the surface potential. 

 

From the surface complexation model, an equivalent surface charge density could be 

obtained that can be used to calculate the electrical potential in the diffuse plane (ψd) 

based on the Gouy-Chapman theory (Equation 1, SI).  Optimization of both 

parameters was based on fitting of the model simulation to zeta potential 

measurements to achieve the minimum square difference of between the modeling 

results and the experiment data (Table 5.1).  Based on a previous study, the 

concentration of surface organic acids have been calculated as mol of organic 

acids/mol of Fe.  The surface site concentration in our study was in the range of this 

number.  The difference was due to the unclear about the exact connections between 

the first and second layers.  In a previous study, zeta potentials of oleic acid-coated 

nanoparticles from pH 4 to 10 have been well-predicted by a surface complexation 

model.  The modeling result in this study was not in fully agreement with the 
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experimental data but it could predict the decreasing trend of the surface charge 

when pH increased (Figure 5.3). 

 

Table 5.1. Adsorption reactions with surface sites (CTABOH) and parameters in the 
surface complexation modeling were obtained from the optimal fitting result. (other 
aqueous reactions are included in the supporting information) 

Reactions and Parameters  

Specific surface area:  147 m2/g  

Site density:                3.66 sites/nm2  

𝐶𝐻𝐴𝐶𝑈𝐻 + 𝐻 + = 𝐶𝐻𝐴𝐶 + + 𝐻2𝑈 logK1 = 9.8         Reaction 1 

𝐶𝐻𝐴𝐶𝑈𝐻 + 2𝐻+ + 𝐶𝐶𝑈42− = 𝐶𝐻𝐴𝐶𝐻𝐶𝐶𝑈4 + 𝐻2𝑈 logK2 = 18.3       Reaction 2 

𝐶𝐻𝐴𝐶𝑈𝐻 + 𝐻+ + 𝐶𝐶𝑈42− = 𝐶𝐻𝐴𝐶𝐶𝐶𝑈4− + 𝐻2𝑈 logK3 = 9.2         Reaction 3 

𝐶𝐻𝐴𝐶𝑈𝐻 + 𝐶𝐶𝑈42− = 𝐶𝐻𝐴𝐶𝑈𝐻𝐶𝐶𝑈42− logK3 = 1.1       Reaction 4 

 

 

Three adsorption reactions added to the model to successfully simulated 

adsorption at three Cr(VI) initial loadings for pH from 4.5 to 10.  HCrO4
- and CrO4

2- 

are usually included as the adsorbed species because they are the dominant Cr(VI) 

aqueous forms (Hu et al. 2005, Zachara et al. 1987). Adsorption reactions for HCrO4
- 

and CrO4
2- to CTAB+ were implemented in a preliminary model, but did not describe 

the experiment results well, especially at high pH conditions. As a result, CrO4
2- 

adsorption to CTAB+ was added into the modeling.  Equilibrium constants for 

adsorption reactions were determined based on the fitting to the experimental data, 

and the optimal set leads to the minimum summation of the square of the residuals 

between experimental and predicted data (Table 1).  The model could capture most 

adsorption features over all of the studied pH conditions.   
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5.3.3 Impact of Tap water and Glendale Water 

In addition to the pH and Cr(VI) loadings, the application of nanoparticles was found 

to be affected by the presence of Ca2+ in the aqueous phase.  The first indication of 

an effect of Ca2+ came in experiments with more complex water sources to which 

Cr(VI) was added to the same concentrations as in the experiments with simpler 

NaNO3 solutions.  For pH 9 Cr(VI) adsorption was 40% in a simple solution and 10% 

in St. Louis tap water, and at pH 6.5 adsorption was 70% in the simple solution and 

40% in the tap water.  The Cr(VI) adsorption percentage in Glendale groundwater 

was 20% at pH 7.5, which was again lower than the value of 60% in the simple 

solution at the same pH. 

Because Ca2+ was a major constituent in the St. Louis tap water and Glendale 

water that was not present in the simpler solutions, we tested for its impact on Cr(VI) 

adsorption.  A Ca(NO3)2 solution of 3.3 mM was added into the system, it had the 

same ionic strength as the simple system with 0.01 M NaNO3, and achieved the same 

hardness as in Glendale groundwater. The addition of Ca(NO3)2 significantly 

decreased the adsorption to 5-20% over the whole pH range.  Previous studies have 

demonstrated that Ca2+ can induce the aggregation of surface-functionalized 

nanoparticles that have negatively charged surfaces from coatings with lauric acid, 

oleic acid and sodium dodecyl sulfate (Li et al. 2016a, Li et al. 2014). The 

aggregation of nanoparticles would reduce the exposed surface sites and inhibit 

adsorption.  However, the impact of cations on the aggregation of positively charged 

nanoparticles like the CTAB-coated ones studied here would not be expected to be  
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Figure 5.4. Adsorption of Cr(VI) to CTAB-coated NPs with increasing Ca addition (Cr(VI) 

initial loadings of  10.5 µM);  Measurement of the zeta potential of the nanoparticles with 

certain Ca addition.  
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significant.  The anions in these experiments were NO3
-, which did not affect the 

adsorption of Cr(VI) according to the results from the addition of 0.01 M NaNO3.  

The inhibition of Ca(NO3)2 on Cr(VI) adsorption was due to the presence of Ca2+ and 

not just to the increase in ionic strength  A negligible effect of Ca2+ (up to 50 mg/L) 

has been reported on chromium removal by ferrous iron.(Dong et al. 2011)  The co-

occurrence of Ca2+ and Mg2+ had no effect on Cu2+ removal by 1,6-hexadiamine 

functionalized Fe3O4 nanoparticles (Hao et al. 2010).   

 With increasing Ca2+ concentrations from to 0.03 to 3.3 mM at pH 7.5, 

(Cr(VI) adsorption decreased (Figure 5.4).  The adsorption percentage was ~63% for 

the lowest Ca2+ addition and was close to ~58% in simple system.  The surface 

properties of the nanoparticles did not change significantly in terms of the surface 

charge and hydrodynamic diameter.  The zeta potential of nanoparticle suspensions 

at pH 7.5 increased from 14 to 20 mV and the hydrodynamic diameter increased 

from 24 to 30 nm, with Ca2+. After adsorption experiments, nanoparticle suspensions 

with the presence of Cr(VI) and Ca2+ were measured for the hydrodynamic diameter, 

which remained at ~30 nm.  This was consistent with previous studies where no 

significant impact was observed for Ca2+ on positively charged nanoparticles at this 

level of concentrations since the Ca2+ CCC is 11.1 mM for C12TAB-coated 

nanoparticles.  CTAB in this study has 18 carbons in the long chain, which might 

yield a slightly different CCC.  According to the zeta potential and hydrodynamic 

diameter measurements, decreasing adsorption would not be due to the decreased 

available surface sites resulted from aggregation.  A previous study found that the 

presence of Ca2+ might lead to the formation of passivating CaCO3, which could 
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result in a decreased Cr(VI) adsorption capacity by zero-valent iron (Liu et al. 

2009b).  The formation of CaCO3 precipitation could probably block surface sites 

and affect the adsorption process.  However, precipitation of CaCO3 was excluded in 

this system.  Based on the assumption that inorganic carbonate was equilibrated with 

the atmosphere, the solubility of Ca2+ in terms of CaCO3 is shown in SI of this 

chapter.  Ca2+ concentrations in the supernatant after adsorption experiments were 

measured and remained identical to the initial concentrations.  All concentrations 

were far away from saturation conditions, indicating the low possibility of CaCO3 

precipitation.   

The observations just discussed indicate that the effect of Ca2+ on Cr(VI) 

adsorption is not due to induced aggregation, modified surface charge, or coating by 

a CaCO3 precipitate.  In the absence of these phenomena affecting Cr(VI) adsorption, 

the exact cause remains unclear. One possibility that could warrant further 

investigation is that the Ca2+ could have influenced the structure of the CTAB 

organic coating in a way that altered the availability of functional groups that could 

adsorb Cr(VI).   

 

5.4 Conclusions 

CTAB-coated NPs can be effective adsorbents for anionic contaminants that include 

As(V) and Se(VI) in addition to Cr(VI) due to favorable electrostatic interactions 

between positively charged adsorbates and negatively charged aqueous species.  

Surface complexation models can be developed to predict the trend of surface 

charges under different pH conditions and simulate Cr(VI) adsorption with a 
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relatively simple set of aqueous reactions.  Predictable adsorption behavior benefits 

future application of nanoparticles in the water treatment system because adsorption 

performance can be assessed with the model over broader ranges than could be 

experimentally evaluated.  However, the application of the material-based treatment 

processes needs more consideration of its stability and treatment performance in real 

water resources.  The performance of nanoparticles was inhibited by the Ca2+ in St. 

Louis tap water and Glendale groundwater.  Although there are remaining questions 

about mechanisms of the impact from Ca2+, the inhibition of Cr(VI) adsorption to the 

CTAB-coated nanoparticles occurs without causing nanoparticle aggregation, 

carbonate precipitate coating, or reversal of surface charge.   
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Supporting information contains the Glendale groundwater composition, aqueous 

reactions in the surface complexation modeling, surface charge density calculation, 

and Ca solubility and concentration measurements. 

 

 

Table S5.1. Glendale groundwater composition (Pan et al. 2016a). 

 

 

 

 

 

 

 

 

  

Component Concentration 

alkalinity 215 mg/L as CaCO3 

chloride 68 mg/L 

conductivity 885 µS/cm 

hardness 326 mg/L as CaCO3 

nitrate 5.3 mg/L as N 

pH 7.5 

phosphate 0.25 mg/L as PO4 

silicate 27 mg/L as SiO2 

sulfate 220 mg/L as SO4 
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Table S5.2.  Aqueous Reactions Considered in the Surface Complexation Model 

Reaction log K* 

𝐻2𝑈 ⇌ 𝐻+ + 𝑈𝐻−                                                       -14.00 

2𝐶𝐶𝑈42− + 2𝐻+ = 𝐶𝐶2𝑈72− + 𝐻2𝑈 14.56 

𝐶𝐶𝑈42− + 𝐻+ = 𝐻𝐶𝐶𝑈4− 6.51 

𝐶𝐶𝑈42− + 2𝐻+ = 𝐻2𝐶𝐶𝑈4 6.419 

𝐶𝐶𝑈42− + 𝑁𝑢+ = 𝑁𝑢𝐶𝐶𝑈4− 0.6960 

𝐻+ + 𝐶𝑈32−  ⇌ 𝐻𝐶𝑈3− 10.33 

2𝐻+ + 𝐶𝑈32−  ⇌ 𝐻2𝐶𝑈3 16.68 

𝑁𝑢+ + 𝐻+ + 𝐶𝑈32−  ⇌ 𝑁𝑢𝐻𝐶𝑈3 10.079 

𝑁𝑢+ + 𝐶𝑈32−  ⇌ 𝑁𝑢𝐶𝑈3− 1.270 

𝐶𝑢2+ +  𝐻2𝑈 ⇌ 𝐶𝑢𝑈𝐻+ + 𝐻+ -12.697 

𝐶𝑢2+ + 𝐻+ + 𝐶𝑈3
2−  ⇌ 𝐶𝑢𝐻𝐶𝑈3+ 11.599 

𝐶𝑢2+ + 𝐶𝑈32−  ⇌ 𝐶𝑢𝐶𝑈3(aq) 3.2 

 

* Source: MINEQL5.0 Database. 
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Surface charge density calculation and the Gouy-Chapman equation.(Benjamin 
2014) 

𝜎𝑑 = [𝐶𝐶𝐶𝐶]∙𝑧
𝑆∙𝑆𝑆

                                      Equation S1 

𝜎𝑑 = −0.1174𝐶𝑠0.5𝑠𝑠𝑠ℎ 𝑧𝑧𝜓𝑑
2𝑅𝑅

          Equation S2 

Symbol Meaning 
σd equivalent charge density (C/m2) 
[Coul] coul concentration from the model simulation (mol/L) 
F Faraday constant (C/mol) 
S solid concentration (g/L) 
SA Specific surface area (m2/g) 
Cs electrolyte concentration (mol/L) 
z absolute value of the ionic charge number of the electrolyte ions 
ψd electrical potential in the d plane (V) 
R gas constant (J/mol-K) 
T temperature (K) 

 

The surface complexation model could predict the coul concentrations, which can be 

used to calculate σd from Equation S1. Substitute σd into the Equation S2 and ψd can 

be obtained, which represent the electrical potential in the d plane, and can be 

roughly considered as the zeta potential on the surface of solids.   
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Ca solubility and Ca concentration measurements 

 

Figure S5.1. ─: Ca solubility in terms of CaCO3 with the assumption that the system was 
open to the atmosphere.  ○: Measured Ca concentrations after the adsorption experiments. 
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Chapter 6. Conclusions and 

Recommendations for Future Work 

6.1 Conclusions  

This doctoral thesis research explored metal behavior in both sediments and in 

aqueous suspensions of engineered nanoparticles. The work investigated the 

dominant mechanisms of uranium-phosphate and metal-nanoparticle interactions and 

examined their implications for field remediation and water treatment.  Information 

about both systems was gained from using different experimental configurations, 

spectroscopy, microscopy, speciation calculations and modeling approaches. 

Specific conclusions from each task are described below. 

 

Subtask 1A: Phosphate-induced immobilization of U(VI) in Hanford 

sediments 

In the first task, batch and column studies demonstrated the influence of phosphate 

on U(VI) transport in environmentally relevant sediments.  Batch experiments 

confirmed that both adsorption and precipitation could contribute to U(VI) retention, 

depending on the exact uranium and phosphate concentrations present.  The specific 

concentrations in the column study as well as the high solid:water ratio in the column 

and occurrence of advective flow make the results of the column most directly 

relevant to subsurface environments.  Once phosphate is introduced, sorbed U(VI) 
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would be harder to mobilize, which could largely limit the desorption of U(VI) 

during advective flow and hence decrease the downgradient U(VI) concentrations.  

Retention of U(VI) following phosphate addition to the Hanford sediments was 

shown to be due to enhanced adsorption of U(VI) species, including U(VI) 

adsorption to freshly formed calcium phosphate minerals, instead of formation of 

U(VI)-phosphate precipitates. After ceasing phosphate treatment, the effect on 

retention could last for a long duration without addition of phosphate, which can 

limit the costs and possible environmental impacts (e.g., eutrophication) that would 

be associated with larger and longer additions of phosphate.  As slow U(VI) 

desorption from sediments may occur after ending phosphate addition, U(VI) release 

can be slowed and the released concentration may be controlled effectively by 

optimizing the timing and doses of phosphate addition, which can be beneficial for 

successful in situ uranium immobilization. 

 

Subtask 1B: Modeling U(VI) sorption in Hanford sediments and the 

impact of phosphate addition 

A multi-rate first order kinetic adsorption model was applied to fit U(VI) adsorption 

in batch system.  The model descirbed the U(VI) adsorption with a rapid initial 

process followed by a slow adsorption, where the U(VI) transferred into the 

intraparticle pores. A one-dimensional non-equilibrium CDE model was used to fit 

uranium and bromide profiles, which yielded a retardation factor of 24.3 for U(VI), 

which showed higher adsorption to Hanford sediments than to previously studied 

Rifle sediments.  As the CDE model only considered U(VI) transport in columns by 
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adsorption process with no consideration for the change of the water chemistry, an 

advanced reactive transport model was developed with the implementation of 

advective flow, surface complexation modeling, kinetically controlled mineral 

dissolution and full consideration of aqueous speciation. From simulating results in 

both batch and column systems, models revealed that with the addition of phosphate, 

U(VI) adsorption was enhanced by forming sediment-U(VI)-phophate ternary 

complexes that have higher adsorption affinity than U(VI)-carbonate complexes. In 

addition, the precipitation of Ca-P solids decreased Ca concentrations, yielding more 

U(VI) being adsorbed to the surface, instead of existing as poorly adsorbed Ca-

U(VI)-carbonate complexes. Modeling approaches improved the understanding 

towards U(VI) behavior under complex geochemical conditions.  

 

Task 2: Impact of water chemistry on U(VI) and Cr(VI) removal by 

various engineered magnetite nanoparticles and development of 

surface complexation modeling 

Task 2 investigated the impact of water chemistry on U(VI) and Cr(VI) removal by 

engineered magnetite nanoparticles. Batch adsorption studies were performed to 

probe adsorption edges under various conditions (pH, DIC and initial loadings). The 

results provided information on U(VI) and Cr(VI) adsorption to nanoparticles coated 

with several types of organic acids that have different surface functions groups. 

Functional groups in stearic acid (SA), oleic acid (OA) and octadecylphosphonic 

acid (ODP) coatings led to different adsorption extents (SA≈ OA > ODP) of U(VI) 

adsorption under the same conditions. The adsorption of U(VI) to OA-coated 
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nanoparticles decreased with initial U(VI) loadings due to the limited surface site. 

The largely inhibitory effect of dissolved inorganic carbon was caused by the 

formation of aqueous U(VI)-carbonate species that have lower adsorption affinity. 

While the highest U(VI) adsorption to SA, OA and ODP-coated nanoparticles 

happened at pH 6 to 7, Cr(VI) adsorption to CTAB-coated nanoparticles decreased 

when pH increased from 5 to 10, due to the change of electrostatic interactions 

between opposite charges. Surface complexation models were developed and 

predicted pH-dependent surface potential values that are consistent with measured 

zeta potentials. With a small set of adsorption reactions, the model can successfully 

simulate the entire adsorption dataset over all studied conditions. Predictable 

adsorption behavior benefits future application of nanoparticles in the water 

treatment system because adsorption performance can be assessed with the model 

over broader ranges than could be experimentally evaluated. The application of 

nanoparticles was observed to be affected with the presence of two drinking water 

supplies, and decreases in Cr(VI) adsorption were associated with the presence of 

Ca2+. Because only slight aggregation was associated with Ca2+ and an observed 

increase in zeta potential with Ca2+ addition should actually enhance Cr(VI) 

adsorption, the causes of inhibition of Cr(VI) by Ca2+ are not associated with particle 

size or surface charge. Instead it is likely that Ca2+ influences the structure of the 

organic bilayer on the nanoparticle surfaces in a way that decreased the availability 

of surface sites. The application of the engineered adsorbents in treatment processes 

needs more consideration of their stability and treatment performance in real water 

resources. 
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6.2 Recommendations for Future Work 

The information gained from this research project provided insights and 

advanced our understanding of metal behavior during interfacial interactions. 

Recommended future work includes but is not limited to (1) investigating the impact 

of changing water chemistry on U(VI) release from Hanford sediments; (2) 

investigating the impact of microbial activity on U(VI) retention; (3) testing the 

regeneration and reuse of nanoparticles and (4) performing column experiments with 

engineered nanoparticle-coated substrates deposited on substrate particles as the 

porous media to investigate metal removal under advective flow conditions. 

The present results involved experiments with sediments from the vadose 

zone of Hanford site, Washington, where the water table is influenced by the water 

stage in the nearby Columbia River. The influent used in this study was synthesized 

according to the groundwater composition in Hanford site.  However, interactions of 

groundwater and surface water may happen and change the water chemistry. It 

would be interesting to see uranium uptake behavior when groundwater and surface 

water interact with each other. In addition, this study has demonstrated a lasting 

benefit of phosphate addition on U(VI) immobilization. When phosphate was 

removed in the influent, small amount of U(VI) was released from sediments. It 

would be particularly interesting to see whether and how the change of water 

chemistry would affect the stability of immobilized U(VI) in the sediments. In 

addition to the impact of pH, dissolved inorganic carbon and other aqueous ions, the 

presence of organic matter might affect the U(VI) behavior in subsurface 
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environments, which would then affect the efficiency of phosphate-induced 

immobilization.  As organic matter can also be strongly related to bioactivity, it 

would affect the immobilization pathway as a biotic reduction process to reduce 

U(VI) to less soluble U(IV) species. As a result, it would be interesting to study the 

effect of phosphate-induced immobilization with concurrent microbial activity in 

sediments.  

The impact of Ca2+ on Cr(VI) adsorption to CTAB-coated magnetite 

nanoparticles remains unclear and it would be interesting to explore whether it was 

the Ca specifically or just the divalent positive charges of this type of cation.  As a 

result, future Cr(VI) adsorption experiments with the addition of Mg could be a 

starting point to investigate this process. Metal adsorption by engineered magnetite 

nanoparticles were conducted in batch systems and investigated the impact of water 

chemistry on adsorption behavior. It would be interesting to study desorption of 

metals from nanoparticles that can benefit the reuse of the material. Studying the 

separation of nanoparticles by magnetic field and controlling the water chemistry to 

wash all the contaminants from nanoparticles would be important for the 

regeneration and reuse of the nanoparticles. In addition, to achieve high removal 

efficiency in real water treatment processes, nanoparticles need to be integrated into 

packed beds for long-term operation with continuous flow, which requires that the 

packed bed have high porosity and permeability. As a result, it would be essential to 

study the removal efficiency of metals by nanoparticles deposited on substrate, and 

quartz would be an easily accessible material.  It would be interesting to study metal 

adsorption by nanoparticles deposited sand and how the availability of the surface 
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sites will change due to the deposition. By conducting adsorption in a continuous 

flow reactor, it would be interesting to test the overall performance, which might be 

affected by adsorption affinity of the sorbents, reaction kinetics, and advective and 

diffusive transport processes.  Ideally the integration of these processes could be 

interpreted using a reactive transport modeling. After nanoparticles have been used 

for metal removal, it is necessary to test the possibility of regenerating used sorbent 

media for reuse or disposal in a column system.  
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Appendix A.  Advanced Modeling of U(VI) Transport in Hanford Sediments 

and the Impact of Phosphate on the Transport Behavior 

Appendix A is an expansion of my thesis research on U(VI) transport 

behavior in subsurface environment and the impact of phosphate, applying a more 

advanced modeling tool to predict U(VI) behavior in column studies under different 

flow rates with the introduction of phosphate.  The modeling work was built upon the 

experimental data of Columns 5-8, which had their experimental data and a more 

rudimentary model presented in Chapters 2 and 3.  I worked closely with Wen Hang, 

a Ph.D. student from Dr. Li Li’s group at Pennsylvania State University in this 

modeling effort.  I provided my conceptual model of the processes, detailed 

information on the column operation, and data from influent and effluent analyses, 

sequential extractions, and mass balance calculations.  We worked together in the 

model development in order to understand U(VI) transport behavior and capture the 

impact of phosphate in the modeling approach. The actual modeling work was 

performed by Wen Hang, and the following simulation results were provided by him. 

We are preparing a co-authored a manuscript on this modeling work. Appendix A 

also includes all the aqueous reactions that were used in the surface complexation 

modeling  that was used in Chapter 2 as well as in the modeling done in 

collaboration with the group at Pennsylvania State University.. 

 

Background 
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The previous modeling work simulated by CXTFIT (Chapter 3) was based on the 

assumptions that the aqueous phase can be partitioned into mobile and immobile 

regions, which is called a dual domain reactive transport model.  Also in the 

CXTFIT modeling, only adsorption accounts for the retardation and the reaction rate 

is a constant, which would not be the real case.  Adsorption is parameterized in 

CXTFIT just as a retardation factor that would only apply at one water chemistry 

conditions and without any consideration of the overall aqueous geochemistry.  As a 

result, we collaborated with Dr. Li Li’s group to develop a more advanced reactive 

model, which can consider all the aspects that could influence U(VI) transport 

through sediments-packed columns. 

 

Modeling the adsorption in a batch system 

Surface complexation modeling for batch systems without the presence of 

phosphate needed to be modeled in order to obtain equilibrium constants that can be 

used in in Phreeqc (software) to account for adsorption.  As experimental conditions 

have been described in the main manuscript, here only the equation and the fitting 

result are presented.  The logKeq was adjusted but was still close to the value used in 

Stoliker’s modeling, which was 21.66 ± 0.23.  The model showed that the dominant 

U(VI) species in the solution were Ca2(UO2)(CO3)3(aq)  (60.5%), Ca(UO2)(CO3)3
2-  

(38.1%), UO2(CO3)3
4-  (0.7%), UO2(CO3)2

2- (0.4%), Mg(UO2)(CO3)3
2- (0.1%) and 

others (< 0.1%). 

            logKeq = 20.6  
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Figure A1. Modeling result for U(VI) adsorption to Hanford sediments with no phosphate 

addition. Batch adsorption experiment was conducted for 48 h to reach equilibrium with 

initial U(VI) loadings from 0 ~ 100 µM at a solid:water ratio of 250 g/L. 

 

The modeling work was developed in order to investigate the impact of 

phosphate on U(VI) transport behavior during the desorption phase.  In addition to 

the previously developed surface complexation reactions, additional reactions related 

to phosphate were introduced into the model.  The surface adsorption of U(VI) with 

the presence of phosphate was described by the following reaction with the 

equilibrium constant obtained from the fitting results. 

 

≡ 𝑆𝑈𝐻 + 𝑈𝑈22+ + 𝑃𝑈43−  ⇌ 𝑆𝑈𝑈𝑈2𝑃𝑈42− + 𝐻+   𝑙𝑙𝑙 𝐾𝑃𝑒 = 10.1  
 

A.  

𝐶𝑢(𝑈𝑈2)2(𝑃𝑈4)2(𝑠) ⇌ 2𝑈𝑈22+ + 𝐶𝑢2+ + 2𝑃𝑈43−        𝑙𝑙𝑙 𝐾 = −48.36 

Na2(UO2)2(PO4)2(s) ⇌ 2UO2
2+ + 2Na+ + 2PO4

3−    logK = −47.41 

 

B.  

𝐶𝑢(𝑃𝑈4)0.74𝐻0.22(𝑠) ⇌ 𝐶𝑢2+ + 0.22𝐻+ + 0.74𝑃𝑈43−  log𝐾 = −13.10 

𝐶𝑢5(𝑃𝑈4)3𝑈𝐻(𝑠) + 𝐻+ ⇌ 5𝐶𝑢2+ + 3𝑃𝑈43− + 𝐻2𝑈     log𝐾 = −44.33 
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Two sets of solid dissolution-precipitation reactions were considered and are 

listed above as A and B.  These dissolution-precipitation reactions affected the 

aqueous speciation of U(VI), Ca/Na and phosphate.  While these logK values 

represent the thermodynami equilibrium conditions (Mehta et al, 2013), the process 

can be controlled kinetically and the precipitation reactions may not actually occur 

during the experiment operation period.  For reaction set A, lower the Keq values led 

to better fitting results. Otherwise, uranium-phosphate precipitation occurs in the 

conditions with low initial U (< 25 μM when P = 1000 μM), which is not constant 

with experimental observations (Pan et al, 2017).  Reaction set B was not useded 

because the final PO4 concentration would be much lower than the experimental 

measurements. It further confirms that U-Ca/Na precipitation is kinetically 

controlled.  Based on the selection of Reaction Set A, the reaction framework was 

simplified by not considering negligible reactions and the modeling results were 

shown in Figure A2.  
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Figure A2. A. Modeling results of U(VI) adsorption to Hanford sediments with phosphate 

addition at 10, 100 and 1000 µM.  The comparison of modeling results to the experiment 

data; B. Comparison of the PO4
3- concentrations to the experiment measurement and the 

predicted Ca-P precipitates; C. Predicted amount of adsorbed U(VI) as So-U and So-U-P 

forms. 

 

Different levels of precipitation of solid Ca3(PO4)2(s) were predicted to occur 

under conditions with initial PO4 concentrations of 10 μM to 1000 μM (Figure A2). 

However, other forms of calcium phosphate solids were observed to be formed that 

might be the precursor of Ca3(PO4)2(s) (Mehta et al. 2014). As a result, this reaction 

was considered in the model to phenomenologically account for the importance of 

the Ca-P precipitation. The Ca3(PO4)2(s) precipitation lowers the Ca2+ concentration 

in the solution and therefore reduces the concentrations of aqueous complexes 

Ca2(UO2)(CO3)3(aq) and Ca(UO2)(CO3)3
2-. More UO2

2+ is adsorbed onto the solids.  

Under conditions with low initial PO4
3- concentration (10 μM and 100 μM), over 90% 

of adsorbed UO2 is in the form of the surface complex ≡SOUO2(CO3HCO3)2-, being 

the dominant species (Figure A2). Under conditions with high initial PO4
3- 

concentration (1000 μM), the surface complex ≡SOUO2PO4
2- dominates, with over 
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60% of adsorbed UO2 being in the form of ≡SOUO2PO4
2-.  The finding was 

consistent with previous interpretations that with no uranium-phosphate precipitation, 

U(VI) adsorption can be promoted by phosphate, forming the ternary surface 

complex ≡SOUO2PO4
2-.  The modeling results also indicate that the effect of 

phosphate on U(VI) sorption highly depends on the geochemical aqueous conditions, 

including phosphate and calcium concentration. 

For column experiments, two flow rates were applied with one for Columns 5 

and 6 and a value twice as high for Columns 7 and 8.  A homogeneous domain was 

first applied to try to fit all four experiments, but it could not describe the adsorption 

behavior.  As a result, a heterogeneous domain with mobile and immobile zones was 

applied, and there was a first-order rate expression for diffusive exchange between 

mobile and immobile zones. The sphere radius of immobile zones and the 

corresponding shape factor were taken from Van Genuchten, 1985. 

 

Mim : moles of chemical in the immobile zone,    

θim: immobile zone porosity,  

Cm and Cim:  concentrations in mobile and immobile zone (mol/kgw),  

t  : time (s),  

α : the exchange factor (s-1).   

D   : the diffusion coefficient (m2/s),   

R    : the sphere radius of immobile zones,  

fs→1 : shape factor for sphere-to-first-order-model conversion.  
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Figure A3. Simulation results by a two-domain model for breakthrough profiles of trace 

metal (upper two) and U(VI) (lower two). For Column 5 and 6, the flow rate was and 1 PV 

equaled to 2.75 hours. For Column 7 and 8, the flow rate was and 1 PV equaled to 1.38 

hours. Green, red and blue lines were simulations obtained with three diffusive exchange 

factors as indicated in the figure, among which the red lines in both U(VI) and Br figures 

had the best fitting results. 

 

The residence times for Columns 5 and 6 and 7 and 8 were 2.75 hours and 

1.31 hours, respectively, and the breakthrough curves were plotted as a function of 

pore volume (PV). The model was developed from simulating column physical 
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properties, according to the breakthrough profile of trace metal Br (Figure A3).  

Modeling was performed with numerous tests with changing the diffusive exchange 

factors, which led to changes of the output profiles.  The best fitting results with 

diffusive exchange factors of 2.0e-05 s-1 and 1.5e-05 s-1 for each set of columns are 

reasonable according to a Phreeqc example that has a diffusive exchange factor of 

6.8e-06 s-1 under similar physical conditions.  Immobile zones in Columns 5 and 6 

and Columns 7 and 8 may have different shapes.  Small diffusive exchange factors 

leads to early starts and long tails in breakthrough curves. 

During the simulation for U(VI) adsorption in columns, all parameters of 

equilibrium adsorption constants and other physical properties are directly from the 

batch reactor and breakthrough curves.  The same value of diffusive exchange factor 

that achieved the best fit for Br also led to a good fit for U(VI) breakthrough curves.  

The effect of diffusive exchange factor on U(VI) adsorption follows the same trends 

with nonreactive Br. In the case with high diffusive exchange factor, U(VI) can be 

transported into the immobile zones more easily, resulting in more U(VI) on solids 

and less U(VI) in the effluent solution. With time, more sorption sites are occupied 

and less U(VI) can be adsorbed onto solids.   

U(VI) concentrations of Columns 5 and 6 in aqueous and solid phases were 

plotted as a function of length, which both showed decreasing trend along the 

column length (Figure A4). For both phases, differences between mobile and 

immobile zones are significant at the early period (10 PV > 20 PV > 67 PV) and 

became more identical after later period. The significant differences at the early 

period were due to the limitation of diffusion exchange. 
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Figure A4. U(VI) in mobile zone and immobile zone as a function of length in Column 5&6. 

Upper two: U(VI) concentration in aqueous phase; Lower two: U(VI) concentration in solid 

phase. 

 

Sensitivity analysis tested the effects of porosity, dispersivity, influent 

velocity and the influent concentration on simulated effluent profiles (Figure A5).  

Porosity and dispersivity did not affect the shape of the breakthrough curves and 

there was only a slight change after 20 PV (porosity) and the beginning stages 

(dispersivity).  However, the change of the flow rate caused significant differences, 
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confirming the hypothesis that U(VI) adsorption process was a non-equilibrium 

process and was controlled by its intraparticle diffusive process.  

 

 

Figure A5. Sensitivity analysis of porosity, despersivity, injecting velocity and injecting 

concentration on U(VI) breakthrough curves.  

 

Modeling the Batch and Columns with Phosphate 
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Figure A6. Breakthrough curves of nonreactive tracer Br in the whole process and the 

modeling results. 

 

The surface complexation reactions were again included in the reactive transport 

model for column study.  The behavior of the Br tracer in Columns 5-6 and Columns 

7-8 could be successfully predicted with the same parameters used for modeling the 

adsorption phase (Figure A6).  The model could predict the fast decrease of effluent 

U(VI) concentrations (Figure A7).  Different scenarios have been tested: (1) no 

phosphate added into the injecting fluid; (2) phosphate added but no Ca3(PO4)2(S) 

precipitation; (3) phosphate added and the thermodynamic precipitation of 

Ca3(PO4)2(S) and (4) phosphate added and the kinetic-controlled precipitation of 

Ca3(PO4)2(S). Among four scenarios, the last one led to the best fit to the U(VI), PO4
3- 

and Ca effluent profiles during the desorption phase at the same time. It was 

observed that Ca concentration played a significant role in controlling the U(VI) 

retention (Figure A8).    
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Figure A7. Modeling the breakthrough curves of U(VI), P and Ca effluents under four 

scenarios for Column 5 and 6 (upper three), Column 7 and 8 (lower three). 

 

 
Figure A8. Modeling results for U(VI) profiles with two Ca2+ concentrations in the influent 

for the release phase with 1 mM PO4
3-. 



www.manaraa.com

 

 
 

139 

 

According to the modeling result, with higher Ca2+ loading, less U(VI) can be 

retained in the column.  The formation of more stable Ca-U-P ternary complexes 

would inhibit the adsorption of U(VI) onto sediments.  This is also consistent with 

the previous findings that phosphate addition is less effective for U(VI) 

immobilization in Rifle site, where the groundwater has much higher Ca2+ 

concentration (~5.0 mM).   

U(VI) distribution along the column has been presented in both aqueous and 

solid phases, under different scenarios.  If no phosphate was in the influent, then the 

U(VI) desorbs from solids gradually. For Scenario Four, the Ca-P precipitation 

reduces the Ca2+ concentration in the aqueous phase, leading to more desorbed U(VI) 

in the form of UO2
2+ that could be able to form uranly carbonate and uranyl 

hydroxide complexes, rather than Ca-U aqueous complexes. Therefore more U(VI) 

can be re-absorbed onto the solids. It results in differences of findings from the 

literature regarding to the impact of Ca.  Comarmond16 found that due to no Ca2+ in 

the solution, no significant increase in U(VI) uptake in presence of phosphate (< 100 

μm). 
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Figure A9. Modeling of U(VI) concentrations (left: aqueous concentrations in µg/L; right: 

solid concentrations in µmol/L) at three times during the release phase (68.5, 86.5 and 106.5 

PV) along the column length for Column 5 and Column 6 under three scenarios. With the 

presence of phosphate and for U(VI) concentrations in solid phases, the concentrations of 

U(VI) in the form of So-U and So-U-P was plotted. 
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Several major findings can be drawn from the modeling work. Phosphate 

addition enhances U(VI) sorption through two mechanisms in both batch reactors 

and columns: (1) Ca-P precipitation, lowering the formation of poorly adsorbed Ca-

U(VI)-carbonate species due to decreased Ca concentration  and (2) the formation of 

ternary surface complex So-U-P. Therefore phosphate addition helps retain more 

U(VI) in the sediments. Under low initial phosphate condition, mechanism (1) is 

more dominant. With phosphate addition, the Ca2+ concentration plays a critical role 

in U(VI) sorption.  Low Ca2+ helps retain more uranium in the system.  

Advective flow and intraparticle diffusive transport affect the U(VI) sorption 

in heterogeneous media. The immobile zones inhibit the U(VI) sorption due to the 

slow transport rates. And the fast overall flow velocity lowers the mass of adsorbed 

uranium on solids. The reactive transport model in this work helps better understand 

the impact of phosphate addition on uranium sorption in natural systems.  
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Appendix B. Heavy Metal Concentrations, Bioaccessibility and the Potential for 

Human Exposure in Urban Community Gardens:  A Study in St. Louis, 

Missouri  

Appendix B is about the measurement of metal levels and Pb bioaccessibility 

in soils from urban community gardens in St. Louis City and neighboring St. Louis 

County.  I participated in processing both soil and tomato leaf samples and acid 

digestions.  I was in charge of the sample analysis to obtain elemental compositions 

for all soil samples.  I participated in the data analysis process and project 

discussions for the interpretations of the results.  The text below is an excerpt from a 

manuscript that has been submitted to Journal of Environmental Quality, ‘Heavy 

metal concentrations, bioaccessibility and the potential for human exposure in urban 

community gardens: A study in St. Louis, Missouri’, the authors are Manvitha Marni, 

Roger Wong, Leah Gable, Zezhen Pan, Zorimar Rivera-Núñez, Daniel E. Giammar. 

 

Introduction 

Community gardening is a popular activity throughout the United States, with 

the American Community Gardening Association estimating that there are 

approximately 18,000 community gardens throughout the U.S. and Canada 

(American Community Gardening Association, 2017). Common reasons for 

participating in community gardening include “to consume fresh foods” and “to 

improve health among members,” indicating that gardeners perceive that community 

gardening offers health benefits (Guitart et al., 2012). Gardeners, however, are also 

aware of potential environmental health concerns associated with community 
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gardens. Community garden soils are subject to federal standards that specify the 

permissible amounts of Pb, As, and other toxic elements in soils used for specific 

purposes. These elements can be absorbed by humans through ingestion of soil and 

produce grown in the soil. Furthermore, in humans, metal internal dose has been 

shown to be associated to soil metal levels (Yankel et al., 1977).  

Lead is a contaminant of particular concern in urban soils. A survey of 

Baltimore gardeners showed that 11 percent of respondents were concerned about 

toxic metals and other trace elements as soil contaminants, with Pb the foremost of 

those concerns (Kim et al., 2014). Particularly in urban areas, historical industrial 

activities have often resulted in metal contamination of the surrounding soils. In 

Oakland, California soil lead concentrations at potential urban agriculture sites had 

spatial variations associated with past land use (McClintock, 2012). A study of 

gardens south of Boston identified the two primary sources of Pb in the gardens as 

leaded gasoline and paint containing Pb (Clark et al., 2006). For this study some 

gardens had clean fill soil from outside sources that would ideally be less 

contaminated than in-ground soil. However, a later study by Clark et al. (2008) 

showed that raised beds containing clean fill soil showed an increase in average Pb 

over four years, indicating the potential for accumulation of contaminants in soils 

under modern and not legacy industrial conditions. 

Lead contamination of soils is an important environmental issue in Missouri, 

which is the context in which the present study was performed. The current federal 

standard limits Pb to 1200 µg/g in residential areas not frequented by children (US 

EPA, 2001). Soil located near a former lead smelter in southwest Missouri far 
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exceeded this concentration, containing 4361 µg/g of Pb. Those living near the 

smelter had elevated blood lead levels (Yang et al., 2001), which is the standard 

biomarker to assess Pb exposure. In Herculaneum, which was home to an active lead 

smelter through 2013 and is less than 50 miles south of St. Louis, residential soil was 

found to contain Pb levels as high as 33,100 μg/g (Kuster et al., 2004). Some 

residents’ blood also contained elevated Pb levels, with 28 percent of children under 

3 years old having levels higher than 10 µg/dL (Minor et al., 2002). Herculaneum’s 

soil also contained up to 82 µg/g As and 240 µg/g Cd (Missouri DNR, 2002). A 

study in East St. Louis, Illinois, located across the Mississippi River from St. Louis, 

found that the western half of the city had an average Pb concentration of 427 µg/g; 

this study specifically indicated gardening in the studied soils as a potential health 

concern (Kaminski and Landsberger, 2000).  

 

Objectives 

The objectives of the current study were to examine the potential risk for 

toxic metals in urban soils to affect human health from community gardening. To 

that end, samples of soil and tomato leaves were collected from St. Louis community 

gardens and the levels of major and trace elements in those samples were measured. 

These concentrations were analyzed to determine potential sources of contamination 

and routes of exposure. In addition, surveys were administered to gardeners to assess 

typical gardening practices. 
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Materials and Methods 

Gardens Studied.   

 

Figure B1. Map of gardens chosen for sampling. Inset displays area of focus of study 
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Twenty community gardens (Figure B1) were chosen from throughout St. 

Louis City and the northern part of neighboring St. Louis County. Gateway Greening, 

a local community gardening network, helped identify community gardens to 

represent four geographical areas within St. Louis City and County. Our final sample 

consisted of five community gardens within each of the four geographic regions of St. 

Louis: South, Central, North St. Louis County, and North St. Louis City.  Soil 

samples were collected and a total of 93 gardeners were interviewed from all 20 

gardens between June and August 2015. Tomato leaf samples from 10 of the gardens 

were also collected in July 2015. Gardens ranged in age from newly founded to 

nearly thirty years old. Six gardens were re-visited in November 2015, after produce 

had been harvested. Soil was re-sampled to determine if sampling location, season, 

or other factors such as turning the soil affected metal concentration. Soil samples 

were collected and analyzed for total metals content as during the initial sampling. 

 

Soil Sampling and Analysis.   

Gardens ranged in size from eight plots to over 30, with plots typically 

measuring 10 feet by 3 feet. In each garden, four plots were sampled to provide a 

snapshot of plot-to-plot variability. All but two plots sampled were raised beds filled 

with soil brought in from another source; the remaining two plots were in-ground 

beds. Non-adjacent plots in each garden were sampled to provide a representation of 

all parts of the garden. Three surface soil samples were taken from each plot by 

inserting a hollow plastic barrel (inner diameter 2.6 cm) to a depth of 9.8 cm into the 
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soil. Soils were stored in resealable plastic bags and kept in a refrigerator after 

sampling. 

After sampling, the three samples from each plot were combined and hand-

mixed thoroughly to create a representative composite sample. These samples were 

then oven-dried at 110oC for 24 hours. Dried soils were used in all analysis 

procedures. Soil pH was measured with a pH probe in the solution generated from a 

5:1 by mass water:soil mixture. To digest the samples in preparation for 

measurement of total metal concentrations, 0.25 g of soil were combined with 8 mL 

concentrated HNO3 and 2 mL concentrated HCl. The mixture was heated at 100 oC 

for 4 hours before being diluted with 40 mL ultrapure water and filtered with a 0.2 

m PES filter. Duplicate samples for each plot were extracted. In order to test 

whether the soil digestion was effective in measuring total metals content, duplicate 

samples (2 g each) of a reference soil (Montana II Soil / Standard Reference Material 

2711a) with a known composition were digested and analyzed by the same processes 

used for the garden soils. The results were in the range of the concentrations as 

reported by using EPA Method 3050B (USEPA, 2015). 

The urban soils bioaccessible lead test (USBLT) was used to assess the 

amounts of Pb that could become accessible for human uptake if the soils were 

ingested (Beyer et al., 2016). Soils were passed through a 1.4 mm sieve and 2.5 g of 

sieved soil were combined with 25 mL of 0.4 M glycine that had been adjusted to pH 

2.5. The samples were then agitated in a platform shaker at 100 RPM for two hours. 

The extraction was run at the ambient laboratory temperature (22±2 °C). Extracts 

were filtered through medium porosity filter paper (Whatman) followed by a 0.2 m 
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polyethersulfone filter (Tisch Scientific). The extraction was run in duplicate for 

each plot.  

The filtered samples from the total digestions and bioaccessibility tests were 

analyzed with inductively coupled plasma mass spectroscopy (ICP-MS) (Agilent 

7500ce or Perkin-Elmer ELAN DRC II). A multi-element analytical method was 

used to quantify concentrations of Pb, As, Cd, Cu, Co, Ni, Mo, Ca, Mg, Fe, Zn, and 

Cr.  

After the initial soil samples had been taken, leaves from tomato plants in ten 

of the gardens were collected. Eight leaves were collected from tomato plants in each 

of four plots in ten of the gardens; this usually involved collecting leaves from four 

plants in each plot, but fewer plants were used if a plot did not have four plants. 

When possible, leaves were collected from the same plots where soils had been 

sampled, but other plots were used when the original plots contained no tomato 

plants. For each plant, pairs of leaves were collected with one closer to the roots and 

the other higher up on the plant. Leaves were collected by cutting them off the plant. 

After sampling, leaves were oven-dried at 105 oC for 12 hours. Dried leaves were 

digested in nitric acid and analyzed by ICP-MS (PerkinElmer NexION) in a 

laboratory specializing in high-throughput plant tissue analysis.  Leaves were 

analyzed for As, Cd, Na, Mg, Al, Ca, Fe, Mn, Co, Ni, Cu, Zn, Se, and Mo. The 

leaves were not analyzed for Pb because it was not an element run in the standard 

protocol of the plant tissue analysis laboratory.   

 

Gardener Surveys.   
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Structured gardener surveys including questions on demographics, gardening 

practices and activities, and exposure were developed following a previous study 

conducted on urban community gardeners (Kim et al., 2014). Gardening practices 

and activities included items such as fertilizer, pesticide, and compost use. Questions 

on exposure examined items such as types of protective gear used, time spent at the 

garden, and type of produce grown. Garden leaders were also interviewed to obtain 

additional information including gardens’ age and previous use of the land on which 

the garden was currently set. Interviews were conducted alongside soil sampling. 

Gardens were visited on days when the highest proportion of gardeners was present 

based on garden leaders recommendation. Results for the gardener surveys were 

analyzed using SPSS version 22. The Human Research Protection Office at 

Washington University in St. Louis approved the gardener surveys (#201506004). 

 

Results and Discussion 

Soils 

Soil pH values ranged from 6.39 to 7.87, with a mean of 7.34. Gardens 

tended to have consistent pH across plots, with the exception of Garden 2. This 

matches the expected pH of St. Louis area soils, which typically have pH values 

above 6.0 (Nathan et al., 2007).  

Although soil Pb concentrations varied from plot to plot, overall Pb 

concentrations did not exceed EPA standards (400 µg/g for “bare [residential] soil in 

children’s play areas”) (Figure B2a). One plot in Garden 13 had a value above 500  
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Figure B2. Total concentrations of (a) lead, (b) arsenic, and (c) cadmium for original soil 

samples. Individual bars indicate average concentrations by plot in each of the 20 gardens, 

with error bars showing minimum and maximum concentrations. Solid lines indicate EPA 

non-carcinogenic screening levels; dashed lines indicate average Missouri surface soil 

concentrations from USGS data. The screening level for cadmium is 71 µg/g, so it would be 

out of range for panel c. 
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µg/g for one of the duplicate extractions of soil from that plot, but the average for the 

plot was 296 µg/g. Based on U.S. Geological Survey (USGS) samples, the average 

surface soil Pb concentration in Missouri is 29.2 µg/g (Smith et al., 2014). Of the 80 

plots sampled, 34 had an average Pb concentration below the 29.2 µg/g state average. 

Despite the high levels of Pb in many southeastern Missouri soils impacted by 

smelting and other industrial activities, the generally low levels of Pb in the raised 

beds sampled suggest that Pb is not a major environmental health threat in the 

gardens sampled. This could be due to the use of clean fill soil and raised beds, 

which reduce contact with the local soil that would be impacted by a longer legacy of 

urban industrial activity. Clean fill was also associated with lower Pb concentrations 

in a large community garden in Terre Haute, Indiana for which spatial variation was 

assessed (Latimer et al., 2016).  However, regional sources of lead-containing 

windblown particles do have the potential to recontaminate gardens treated with 

clean fill as was observed in urban neighborhoods in Boston (Clark et al., 2008). 

The Missouri average As soil concentration based on USGS samples is 7.63 

µg/g (Smith et al., 2014). Of the 80 plots sampled, 22 exceeded this concentration 

(Figure B2b). These plots tended to be clustered in the same garden, with four 

gardens having all plots in excess of the state average. All plots had As levels above 

the EPA screening level of 0.68 µg/g for carcinogenic risk, but well below the 

screening level of 35 µg/g for noncarcinogenic risk to children (US EPA, 2016). 

Although As levels, even in clean fill soil, do exceed EPA carcinogenic screening 

standards, the majority of gardens are generally in line with statewide average As 
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concentrations. Therefore, urban gardens in St. Louis do not appear to pose a higher 

risk with respect to As than gardens elsewhere in Missouri. 

The Missouri average Cd concentration based on USGS samples is 0.268 

µg/g (Smith et al., 2014). Nearly all plots exceeded this concentration, but all fall 

well below the noncarcinogenic screening level of 71 µg/g (Figure B2c). Although 

St. Louis community gardens do appear to have higher concentrations of Cd than in 

the rest of the state, Cd likely does not pose an environmental health threat.  

Lead and As concentrations were positively correlated with garden age 

(Figure B3), with Pearson correlation coefficients of values of 0.58 and 0.64, 

respectively. These correlations could indicate that clean fill soil is being 

contaminated over time because new inputs of Pb and As could accumulate over 

time to result in higher concentrations in older gardens.  Such accumulation of 

contaminants over time in urban gardens was shown by Clark et al. (2008), and they 

determined that the contamination appeared to be a consequence of transport of 

wind-blown particles. However, the increases in lead over a four-year period in that 

study (from an average of 150 µg/g to an average of 336 µg/g) are much larger than 

the differences in lead concentrations between newer and older gardens in our St. 

Louis study.  Consequently, any recontamination is less severe in the gardens studied 

here or the trend in Pb and AS concentrations with garden age could be the result of 

the source of the clean fill soil having changed over time, with newer sources 

containing less Pb and As.  
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Figure B3. Average total (a) lead and (b) arsenic concentrations in soils 

 

Most gardens showed little variation in Pb, As, or Cd from plot to plot. 

Several gardens, such as Gardens 3, 4, 5, 6, and 19, had consistent, low levels of all 

three elements. All of those gardens were established five years or fewer before 

sampling, which could account for this trend. Because newer gardens had all added 

clean fill soil to the beds recently, their metal concentrations are unlikely to have 
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been significantly affected by the use of fill with higher metal concentrations or the 

recontamination of the soil over time that had affected older gardens. 

Total Pb and Zn concentrations had an appreciable correlation, with a 

Pearson correlation coefficient of 0.69. The correlation between Pb and Zn in soil 

may offer insight into the original source of possible contamination. Lead 

contamination from leaded gasoline, lead paint, or other lead-containing products 

would not be correlated with Zn. Hence Pb in the soils probably comes from natural 

sources or from the deposition of particles from ore-processing facilities and not 

from lead-containing products. Particles from smelters have Pb and Zn proportions 

that are similar to those in the raw ore (Batonneau et al. 2004), and Pb and Zn are 

both rich in these ores. Studies of soils impacted by smelter emissions have found 

elevated concentrations for both Pb and Zn (Deng et al., 2016; Douay et al., 2008).  

Concentrations of Pb in the six gardens that were resampled 4-5 months after 

original samples were collected were generally consistent with the original values 

(Figure S1 of supplemental material). The average absolute percent difference in Pb 

was 21 percent in Pb for the plots sampled in different seasons. Of the 23 samples, 

10 had Pb concentrations within 10 percent of the original sample concentrations. 

Because the November samples were collected from the same plots but not the exact 

same locations as the June-August samples, the values being comparable for both 

sampling periods suggests that plots tend to have consistent concentrations across 

time and space. Some beds had been turned between the original sampling and re-

sampling, but turning also did not appear to have substantially altered the 
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concentrations. A complete comparison of original and resampled soil concentrations 

of As and Cd has been provided in the supplemental material (Figures S2 and S3). 

 

Bioaccessible Pb Measurements 

Bioaccessible Pb levels were obtained for 18 of the 20 gardens sampled. 

Insufficient soil from the original samples remained for gardens 1 and 9. All gardens 

tested had very low bioaccessible percentages, with a maximum of 1.8 percent of the 

total Pb being bioaccessible. Furthermore, there was no observable correlation 

between a garden’s average total Pb concentration and its bioaccessible Pb 

percentage. The low levels of bioaccessible Pb in the raised beds indicate that Pb 

contamination through soil is not a major risk for St. Louis gardeners, as less than 

two percent of the total Pb was bioaccessible in the 18 gardens tested. This value is 

much lower than the bioaccessible fractions measured in other soils, such as soils in 

Joplin, Missouri, which had an estimated bioaccessible fraction of 29.7 percent based 

on the USBLT (Bugdalski et al., 2014). A study which specifically assessed potential 

urban garden soils in Cleveland, Ohio using the Relative Bioaccessibility Leaching 

Procedure (RBALP) also had higher bioaccessible fractions (Minca et al., 2013). As 

with the USBLT procedure used in the present study, the RBALP begins with an 

extraction in HCl with glycine added, and it then includes a subsequent step to 

simulate leaching in the small intestine. When the RBALP procedure was run at its 

typical pH of 1.5, the mean bioaccessible fraction was 72 percent for those soils, 

while a modified version of the procedure, run at pH 2.5, yielded a mean 

bioaccessible fraction of 38 percent (Minca et al., 2013).    
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Figure 4. Average bioaccessible lead concentrations in soils 

 

Tomato Leaves 

Arsenic content in tomato leaves tended to be low regardless of the As 

concentration in the soil, with all but one leaf falling below 1 µg/g, and the 

remaining leaves containing 1.54 µg/g. Cadmium concentrations in the leaves ranged 

from 0.09 to 2.15 µg/g. Leaves from the same plot tended to be closely grouped in 

their Cd levels, although some plots had one leaf that was notably higher than the 

others collected in the plot. Copper levels were similarly closely clustered, with 

leaves in low copper soils ultimately taking up similar amounts of copper as those in 

high copper soils. While concentrations in leaves are only an indirect indication of 
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concentrations that would be present in the tomatoes themselves, the data do suggest 

limited transfer of As and Cd from the soil into the plants.  These results are in line 

with other research into As uptake, which found that tomatoes grown in soil 

contaminated with 36-211 µg/g As contained no more than 0.02 µg/g As in the fruit. 

Choice of vegetable may be significant, as a study of Boston gardens showed that Pb 

uptake is typically lower in fruit crops than other types of crops (Spittler and Feder, 

1979). A more recent study in the Boston area that analyzed both plant tissues and 

soil samples concluded that soil could contribute 72-91% of lead exposure while 

produce consumption only 2-3% (Clark et al., 2008). 
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Figure 5. Relationship between concentrations of (a) arsenic, (b) cadmium, (c) copper in 

tomato leaves and in soils 
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Implications for Future Exposure Risk Assessment in Community Gardens 

The results of the study can provide insights into the design of future community 

gardening sampling programs. There were variations in concentrations from garden to 

garden but also significant plot-to-plot variations for some gardens. Consequently, 

sampling strategies will need to balance the need for collection of multiple samples from 

a single garden with the desire to collect samples from many gardens across a region. The 

plot-to-plot variability demonstrates that it will be necessary to collect multiple samples 

from multiple plots in a garden to get a clear picture of metal concentrations; collection 

of a smaller number of samples could have obscured the ability to see garden-to-garden 

trends in the present study. Metal concentrations in the soils of a plot were quite 

consistent with time, even after some soils had been mixed by post-harvest turning of the 

soil, so getting soil samples from multiple locations should be a higher priority than 

getting soil samples at multiple times within a season.  The trends in metal concentrations 

with garden age suggest that baseline samples should be collected when gardens are first 

established, and that if possible gardens should be resampled over multi-year timescales.   

Collecting leaves at the same time as soil samples would be beneficial, as 

collecting leaves and soil simultaneously from the same plot would allow for direct 

comparison of metal levels in the soil to how much metal was taken up by the plant. The 

general trend of higher metals concentrations in older gardens may also become a 

concern as urban community gardens age. Investigation of the mechanisms by which 

clean fill soil is contaminated could potentially offer strategies for mitigating this concern. 

Analysis of the stable isotope composition of Pb has previously been used in southeastern 
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Missouri to help determine the source of Pb in soil; similar work in community gardens 

could shed light on the source of contamination over time (Rabinowitz and Wetherill, 

1972). 

There were several limitations to this study. Rather than using a random sample 

design, community gardens were recommended by Gateway Greening and six gardens 

opted to not participate in this study. Therefore, selection bias may be present and there 

could be differences between the gardens visited and those that chose not to participate. 

Future work with these gardens could also explore the levels of organic compounds in 

soils. Although toxic metals levels were below EPA soil standards, other chemicals 

including pesticides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated 

biphenyls (PCBs), and petroleum products were not assessed and could be present in soils. 

These chemicals have been associated with a myriad of adverse health outcomes and 

persistent exposure may increase the risk for individuals in direct contact. The statistical 

strength of the findings is also limited by the sample size, and the results of the study can 

also not be generalized yet to urban gardens in other cities. 

 

Conclusions 

Soil sampling found that toxic metals were generally present in St. Louis 

community garden soils at concentrations below EPA screening levels. Additionally, the 

Pb that was present did not appear to be readily bioaccessible, as an in vitro 

bioaccessibility test found that less than two percent of the Pb in the soils tested was 

bioaccessible. Analysis of leaves from tomato plants—the crop most commonly grown 
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by gardeners surveyed—from the same gardens found that uptake of As and Cd in plants 

was similarly low. Future work should focus on regional trends in metal concentrations 

and mechanisms for recontamination, which may help gardeners better assess how to 

minimize exposure as their gardens mature. 
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Appendix C. Iron production, urbanism, and environmental 

sustainability along the Medieval Silk Road: ecological niche 

construction and ancient industrial development at the highland 

smelting center Tashbulak, Uzbekistan 

Appendix C is a summary of a field study and post-field lab work.  It was 

performed as part of the interdisciplinary project “Iron production, urbanism, and 

environmental sustainability along the Medieval Silk Road: ecological niche construction 

and ancient industrial development at the highland smelting center Tashbulak, 

Uzbekistan” that was led by Dr. Michael Frachetti from the Anthropology Department at 

Washington University in St. Louis and involved team members from inside and outside 

of the university.  I joined the 28-day field campaign in Uzbekistan, which included soil 

coring, trench excavations and sampling works. I guided an undergraduate student to 

process samples and determine the elemental composition, and I finished data analysis 

and interpretation.  The content of this research has been included into the whole project 

findings, which is in preparation for publication to a peer-reviewed journal. 

 

Background 

This project was focused on the newly discovered medieval Silk Road city of Tashbulak 

(Uzbekistan), located in a high altitude environmental context unmodified by modern 

development.  From a previous survey, a large urban complex was discovered and the 

area was assumed to have undergone intensive industrial development centuries before 
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the Industrial Revolution.  The primary objective of the current project was to investigate 

the development of the urban sites in the medieval Qarakhanid period (10th-12th c. CE) 

and its ecology, chronology, environmental history, and cultural landscape of the society. 

Our main goal was to test for the geochemical signatures of intensive iron ore production 

and to assess how such production impacted the local biogeochemistry of the soil and 

forest ecosystem. 

 

General Coordinate System and Field Work Procedures: 

The area of investigation around the site was systematically labelled as a site-wide grid 

system.  The first scale is based on 10 m × 10 m ‘quadrats’ that cover the entirety of the 

site area, using A-JJ to represent the north-south direction and numbers (1-33) for the 

east-west direction.  The second scale is inside a 10 m × 10 m unit, where it is further 

divided into 1m x 1m grids, using letters ‘a-j’ to represent the east-west direction and 

numbers (1-10) for the north south direction.  Based on this grid system, each excavation 

trench can be located in the map. 

I was involved in daily fieldwork with the Geoarchaeology team and we 

undertook the geographic and geological reconnaissance to understand the basic 

information of the site and its soil context.  Then soil coring was conducted over the site 

to understand more specific information of soil development at small areas of the site. 

After having an idea for the basic environment of the site, a set of trenches were 

excavated in both archaeological and nonarchaeological contexts to see if there was any 

evidence of human impact on the site development and the environments.  Soil samples 
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from a greater distance (upstream of the site) were collected for comparison as 

background information.  For each excavated trench, soil profiles were studied to 

distinguish the soil context, to record the horizons and to discover featured samples that 

have signatures from human activities. 

 

Figure C-1. Sample profile example.  

 

Sampling: 

A total of 170 samples were collected from the Tashbulak site during June 2015.  

The samples were collected from excavation sites and from a set of trenches along the 

north-south (NS)/east-west (EW) direction, which cover both archaeological and non-

archaeological contexts.  From excavation units, samples were collected from the soil 

profiles at 10-cm intervals while other samples were collected by soil auguring at 10 cm 
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intervals from NS/EW trenches (depth ranges from 0.5 to 2 m, Figure C-1).  Others 

samples were collected inside excavation sites, such as mudbrick from the cemetery, 

burned ashes, and sediments responsive to magnets.  Sample names were labeled 

according to the labeling system that is consistent with other field teams, to locate them 

across the site. For example, for a sample taken from R14-d4-21, R14 represent a 100 × 

100 m unit, d4 means a 10 × 10 m unit, 21 refers to the depth (21 being 200-210 cm 

below the surface) that this sample was taken from.  For soil profiles, 0-10 cm means the 

first samples were taken from the surface.  Accurate locations for all sampling sites were 

recorded by the main survey station.   

 

Methods: 

Samples were dried at 105 ºC for 24 hours to remove the moisture before further 

treatment procedures.  To begin preparing the samples for digestion, approximately 2.0 

grams of each dry soil sample was measured and its weight was recorded before being 

poured into digestion tubes. Digestion tubes were filled with 8.0 mL of concentrated 

nitric acid and 2.0 mL of concentrated hydrochloric acid.  Digestion tubes were placed in 

a heated aluminum digestion block at 100°C for four hours. When the digestion was 

complete, the tubes were allowed to cool before ultrapure water was added to reach a 

final volume of 50 mL.  Extractants were filtered by 0.22 µm PES (polyethersulfone) 

filters and diluted by a factor of 20 and run through ICP-MS to determine concentrations 

of the major elements (Ca, K, Na, Mg and Fe) and trace elements (Cr, Mn, Co, Ni, Cu, 

Zn, As, Ag, Cd, Pb, U). 
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Results and Discussions: 

Based on the data gathered in these procedures, there are a few patterns. Many 

elemental concentrations show no clear dependence on depth, with the exception of Ca, 

which increases as the C horizon (rich in carbonates) is approached. Most elements 

studied also showed fairly consistent concentrations throughout the different site 

locations as well, with the exception of lead, copper, and silver. These three elements 

displayed drastically elevated concentrations in the feature samples taken from the R14 

site, which was assumed to be the production center. This is echoed by the depth profiles 

for the Sondage samples (upstream, studied as the background sediments) and for R14-d4, 

R14-e4 and R14-e5, which also show noticeably greater concentrations of copper in 

comparison to Sondage. In examining the element correlations among all samples, these 

three elements also showed a similar pattern of heightened concentrations when 

correlated with other elements (Figure 2). Other pairs of elements showed either 

predictable proportional increases without any stand-out points or scattered 

concentrations with little to no correlation at all. 

While Tashbulak was originally thought to have had an iron smelting facility, it 

appears that the activity at this site may have included metals other than iron. Iron 

concentrations at the proposed facility do not differ greatly from the concentrations 

around the rest of the site and from the Sondage samples. Our analysis showed that lead, 

copper, and silver have made an unexpected appearance, which could allude to the 

introduction of these metals to the environment due to iron-working at the site. Overall 

the iron-working activity in Tashbulak did not cause any lasting impact on the 

surrounding environment. 
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Figure C-2. Correlation between Cu and Zn among samples. Red points represent samples from 
featured samples and blue points represent the remaining samples. 

 

 

Figure C-3. Elemental concentration distribution in the depth profile (unit R14-e4 as an example) 
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Table C-1. Concentrations of 12 elements in soil samples (featured samples listed) 
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Appendix D. Water, Metals, and Nutrition in Haiti: A Transdisciplinary 

Approach to Public Health Challenges in Developing Countries 

Appendix D includes results from a study that aimed to examine drinking water 

sources in Cap Haitien, Haiti to characterize the metal contaminants and assess the 

temporal and spatial variability in metal contaminant levels among the main drinking 

water sources in Cap Haitien.  I was in charge of lab preparation for sampling, sample 

treatment, and analysis and data interpretation.  The manuscript ‘Water, Metals, and 

Nutrition in Haiti: A Transdisciplinary Approach to Public Health Challenges in 

Developing Countries’ has been prepared and is under revision for an anticipated 

submission, the authors are Zorimar Rivera-Núñeza, Zezhen Pan, Bazelais Duliencec, 

Daniel E. Giammar, Lora L. Iannotti. 

 

Introduction 

Water quality has been associated with nutritional deficiencies as contaminants 

can interfere with nutrient absorption and metabolism, affecting the manifestation of 

specific health outcomes (Ljung and Vahter 2007, Milton et al. 2004).  In Haiti, 

waterborne diseases, such as cholera and other diarrheal diseases, contribute significantly 

to child morbidity and mortality. Although recent data suggest that exposure to 

environmental chemicals may pose an additional risk to public health, this has gone 

largely understudied (Schwartzbord et al. 2013) in the country.  Toxic metals, such as 
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lead, may cause adverse health effects by blocking the absorption of important food 

nutrients thereby affecting children’s growth. 

Characterizing metal contamination in Haiti, as in most developing countries, is 

challenging because of the lack of water quality data, poor drinking water infrastructure, 

variability of water contaminants, and factors interacting with water-use activities, such 

as storage.  Water quality monitoring systems and data may allow for the identification of 

contamination sources and variability of water contaminants. This information is 

extremely important to identify pathways of exposure and potential risks that may 

produce adverse health effects. Our team applied a transdisciplinary framework (Haire-

Joshu and McBride 2013) to integrate research questions and perspectives with a view 

towards improving child health and development in Haiti.  This study aimed to examine 

drinking water sources in Cap Haitien to characterize the metal contaminants and assess 

the temporal and spatial variability in metal contaminant levels among the main drinking 

water sources in Cap Haitien.  

 

Methods 

Study Area 

Cap Hatien is the second largest city in Haiti, after Port-au-Prince, with a 

population of approximately 190,000.  We have been conducting nutrition and public 

health research in Cap Haitien for over 6 years (Iannotti et al. 2014, Iannotti et al. 2015b). 

One randomized controlled trial (RCT) that assessed the impact of a nutrition 

intervention on child growth and morbidities was conducted at the Fort Saint Michel  
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Figure D1. Sampling locations in Cap-Haitien, Haiti. 

 

(FSM) clinic, located in the poorest communal section of the city: Petite Anse.(Iannotti et 

al. 2014) The catchment area for the clinic borders a small international airport, a major 

road, and a canal. Water sampling was complemented with data on water-use activities 

obtained previously from the mothers enrolled in the RCT.  The area was divided in five 

different communities. Water sources in the communities included direct (i.e., public 
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pumps, wells) and indirect groundwater use sources (i.e., sachets, kiosks, drums, and 

reservoirs). Direct water sources included public pumps usually built by the government 

and serve communities of about 40-50 individuals, and wells for individual families 

(private well) or smaller communities (15-20 individuals). Kiosks are small businesses, 

generally 1-2 per community, and sell drinking water that has been treated through 

reverse osmosis. Sachets are small plastic bags containing water that has also been treated 

through reverse osmosis and that is sold by vendors to entire communities. Reservoirs 

and drums are large concrete tanks that are filled by the government or through rainwater 

harvesting. 

 

Collection and Analysis of Water Samples 

Water samples were collected during summer (June) and fall (October) of 2014 to 

evaluate and account for a potential seasonal variability. In order to determine toxic metal 

concentrations, water samples were collected in acid-washed low-density polyethylene 

bottles. Measurements of dissolved oxygen, temperature, conductivity, pH, nitrate, nitrite, 

and phosphate were conducted in situ using field instruments. All collected samples (incl. 

blanks and positive controls) were initially stored on ice and then transported for analyses 

to Washington University in St. Louis, Missouri.  Water samples were filtered through 

0.22 µm filters (PES membranes, Environmental Express) and acidified to 1% HNO3 

before analysis. Concentrations of 17 elements were measured using inductively coupled 

plasma-mass spectrometry (ICP-MS, Perkin-Elmer).  
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Statistical and Geographic Information System Analysis  

Descriptive statistics were calculated for all analysed toxic metal concentrations 

and chemical parameters in drinking water sources using the SAS 9.4 statistical package. 

The magnesium to calcium (Mg/Ca) and barium to calcium (Ba/Ca) ratios were 

calculated as they are indicators of a contamination with seawater.  Water source 

positional information was recorded using GPS (GPS unit information under preparation) 

and was then fed into the ArcMap 10.2.2 Geographic Information Systems Software to 

create an accurate map of the study area. 

 

Results 

Table 1 lists the metal concentrations and chemical parameters by drinking water 

source. Overall, metal concentrations were below the U.S. Environmental Protection 

Agency (USEPA) drinking water standards. The most common drinking water sources, 

as previously identified, were public pumps and wells9 which showed overall higher 

concentrations for almost all metals. Barium concentrations were higher in summer than 

in fall (statistically significant, data not shown). One sampling location was above the 

USEPA 2,000 μg/L drinking water standard for barium but only during summer (2,460 

μg/L).  At a different sampling location, the arsenic concentration was above the USEPA 

drinking water standard during both summer and fall (41.7 μg/L and 57.8 μg/L, 

respectively).  Manganese levels were higher in wells than in other water sources, and 

higher than those found in drinking water sources in the US. Although the USEPA does 
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not have a primary drinking water standard for manganese, their secondary standard 

based on cosmetic or aesthetic effects is 50 μg/L. 

The elemental composition of the water samples can be an indication for an 

intrusion of seawater at a particular location.  Figure D2 shows the relationship between 

barium, magnesium, and calcium with conductivity. Most locations showed low mean 

Mg/Ca and Ba/Ca ratios and only a few locations, closer to the ocean, exhibited elevated 

ratios (2.3-3.4). While elemental magnesium, calcium, and barium concentrations were 

moderately correlated with conductivity (0.77, 0.64, and 0.42, respectively), the mean 

Mg/Ca and Ba/Ca ratios exhibited only a poor correlation (0.23 and 0.05, respectively). 

 

Discussion   

This study assessed the quality of drinking water sources in five communities in 

Cap Haitien, Haiti. While the main toxic metals were below the EPA drinking water 

standards, emerging contaminants, such as manganese, with potentially important 

implications for child development, showed levels above the recommended thresholds.  

In resource-poor populations, toxic metal exposure should be considered within the 

framework of underlying mineral deficiencies, in particular since elements with similar 

coordination chemistry will compete for enteric absorption pathways.  Further, in many 

developing countries exposure to chemicals is not regulated or monitored. 

Based on this preliminary study, ground water toxic metal concentrations in Cap 

Haitien appear to be very low despite the lack of waste management, illegal dumping 

practices, waste dumps, and in the absence of any demarcation between residential and 
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industrial areas.  This appears to contrast with the situation in Port-au-Prince, where the 

groundwater was found to contain greatly elevated levels of toxic metals, including lead 

and chromium, at concentrations in excess of U.S. regulatory values (Emmanuel et al. 

2007, Emmanuel et al. 2009).  A higher industrial activity in combination with extensive 

transportation systems in the capital may explain this difference. 

Manganese occurs naturally in many surface and ground water sources but can 

also be present due to anthropological sources including pesticides, unleaded gasoline, 

fertilizers, and livestock feeding supplements. In Haiti, we observed an inverse 

correlation between manganese and dissolved oxygen suggesting groundwater 

contamination from natural sources. In view of the potential adverse health effects caused 

by manganese and the elevated concentrations found in many parts of the world, the 

USEPA recently listed manganese for the first time in the Drinking Water Contaminant 

Candidate List (CCL) (Ljung and Vahter 2007). The neurotoxicity of manganese after 

occupational exposures has been well documented (Levy and Nassetta 2003), and there is 

increasing evidence of neurotoxicity if consumed orally, especially in early life 

(Bouchard et al. 2007, Pappas et al. 1997, Tsai et al. 2015, Wasserman et al. 2006, Woolf 

et al. 2002). Manganese is also an essential micronutrient required for the functioning of 

many enzymes (e.g., pyruvate carboxylase) and can serve to activate many others (e.g., 

kinases, decarboxylases) (Lonnerdal 1994). 
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Figure D2. Mg concentration as a function of Ca concentrations from collected samples in June 

and September. Correlations between conductivity and Ca or Mg concentrations.   :well; 

:pump; : kiosk; Ο: reservoir; *: sachet. 
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Of particular note might be the underlying public health issue of iron deficiency 

in undernourished populations of Haiti (Iannotti et al. 2015a), as manganese absorption 

may be higher with iron deficiency and can replace iron in the enzyme cytosolic 

aconitase with consequences for translational events (Gropper et al. 2009). 

Overall, the seasonal variability of metal concentrations was very low but samples 

were collected during two time periods only (summer and fall). The higher Ba/Ca ratio 

during summer may indicate different interactions between seawater and groundwater 

throughout the year. Additionally, the spatial variation of the Ba/Ca ratio may indicate 

the potential risk of saltwater intrusion. Saltwater intrusion is the movement of saline 

water into a freshwater aquifer, which can lead to contamination of drinking water 

sources. It is possible that the increased extraction of water from wells for drinking 

purposes in Cap Haitien has facilitated the intrusion of marine water to portions of the 

local aquifer. A saltwater intrusion not only decreases the freshwater storage capacity of 

the aquifer but may also have adverse effects on the health of human populations who use 

the affected aquifer as their primary source for drinking water. Marine water is rich in 

chloride, sodium, magnesium, and calcium ions with a typical salinity around 35g/kg. 

The moderate-to-high correlations of some of these ions with conductivity measurements 

suggest their presence in well water samples. Although these ions are micronutrients 

essential to human health with deficiencies leading to morbidity and mortality, their 

excess may cause toxicity (IOM 2010).  

The main limitation of this preliminary study is the lack of waterborne pathogen 

data to further examine associations between toxic metals and waterborne pathogens. 
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These interactions may cause diarrhoea and lead to other adverse health outcomes. 

Additionally, only the total metal concentration was measured in water samples. The 

ability to differentiate between different oxidation states of the same metal, or speciation, 

is very important for some metals since different species represent different toxicities. 

For example, it is well known that arsenic trivalent species (e.g., arsenite) are more toxic 

than pentavalent species (e.g., arsenate) (Hughes et al. 2011). Despite these limitations, 

the preliminary data presented here provide valuable information to plan future nutrition 

interventions in Cap Haitien, in particular since this type of data is notoriously sparse in 

most resource-poor country settings.  

Chronic exposure to chemicals, including metals, is a growing global problem. In 

many developing countries, the lack or poor quality of environmental monitoring data 

represents a challenge not only for the assessment of environmental threats but also for 

the examination of interactions between metals and other areas of public health, including 

nutrition. Environmental chemicals can interact with nutrition and may affect health 

outcomes in two main ways: 1) the nutritional status may influence the level of chemical 

exposure and toxicity; and 2) nutritional deficiencies and chemicals affect similar health 

outcomes (Kordas et al. 2007). Certain populations, such as pregnant or lactating women 

and young children, may have a higher risk of experiencing adverse effects of chemical-

nutrient interactions due to their higher nutrient requirements. These segments of the 

population are also more susceptible to waterborne pathogens, which is the number one 

cause of diarrhoea and other nutrition-related conditions in resource-poor countries.  
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Evaluating these interactions requires a transdisciplinary approach introducing strategies 

and methods across several fields.   

This study combined nutrition, environmental health, and environmental 

geochemistry to develop an initial research framework to complement water sanitation 

and nutrition strategies with a view towards further assessments to understand and 

address child health and development challenges.  
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